Lei Xie , Ben Cao , Xiaoru Wen , Yanfen Zheng , Bin Wang , Shihua Zhou , Pan Zheng
{"title":"ReLume: Enhancing DNA storage data reconstruction with flow network and graph partitioning","authors":"Lei Xie , Ben Cao , Xiaoru Wen , Yanfen Zheng , Bin Wang , Shihua Zhou , Pan Zheng","doi":"10.1016/j.ymeth.2025.03.022","DOIUrl":null,"url":null,"abstract":"<div><div>DNA storage is an ideal alternative to silicon-based storage, but focusing on data writing alone cannot address the inevitable errors and durability issues. Therefore, we propose ReLume, a DNA storage data reconstruction method based on flow networks and graph partitioning technology, which can accomplish the data reconstruction task of millions of reads on a laptop with 24 GB RAM. The results show that ReLume copes well with many types of errors, more than doubles sequence recovery rates, and reduces memory usage by about 60 %. ReLume is 10 times more durable than other representative methods, meaning that data can be read without loss after 100 years. Results from the wet lab DNA storage dataset show that ReLume’s sequence recovery rates of 73 % and 93.2 %, respectively, significantly outperform existing methods. In summary, ReLume effectively overcomes the accuracy and hardware limitations and provides a feasible idea for the portability of DNA storage.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"240 ","pages":"Pages 101-112"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325001070","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
DNA storage is an ideal alternative to silicon-based storage, but focusing on data writing alone cannot address the inevitable errors and durability issues. Therefore, we propose ReLume, a DNA storage data reconstruction method based on flow networks and graph partitioning technology, which can accomplish the data reconstruction task of millions of reads on a laptop with 24 GB RAM. The results show that ReLume copes well with many types of errors, more than doubles sequence recovery rates, and reduces memory usage by about 60 %. ReLume is 10 times more durable than other representative methods, meaning that data can be read without loss after 100 years. Results from the wet lab DNA storage dataset show that ReLume’s sequence recovery rates of 73 % and 93.2 %, respectively, significantly outperform existing methods. In summary, ReLume effectively overcomes the accuracy and hardware limitations and provides a feasible idea for the portability of DNA storage.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.