Breaking the trade-off between lithium purity and lithium recovery: A comprehensive mathematical modeling based on membrane structure-property-performance relationships
Fengrui Yang , Ming Yong , Zhikao Li , Zhe Yang , Xiwang Zhang
{"title":"Breaking the trade-off between lithium purity and lithium recovery: A comprehensive mathematical modeling based on membrane structure-property-performance relationships","authors":"Fengrui Yang , Ming Yong , Zhikao Li , Zhe Yang , Xiwang Zhang","doi":"10.1016/j.watres.2025.123678","DOIUrl":null,"url":null,"abstract":"<div><div>The application of nanofiltration (NF) membranes for resource recovery, particularly lithium (Li) extraction from high magnesium (Mg) brines, is a rapidly growing research area. However, the trade-off between high Li<sup>+</sup> purity and recovery remains challenging. In our study, we extend the widely adopted Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE) to analyze membrane structure-property-performance relationships at the process scale. For the first time, we quantify how membrane intrinsic parameters (e.g., pore size, effective thickness, and charge density) affect Li<sup>+</sup> purity and recovery under module-scale processes. Under this framework, we demonstrate that electrically neutral and positively charged membranes outperform negatively charged membranes, albeit at the cost of slightly higher required hydraulic pressure. Notably, positively charged membranes with smaller pore size yet high water permeance (40–80 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) are preferred, which could simultaneously achieve excellent Li<sup>+</sup> purity (∼98 %) and high Li<sup>+</sup> recovery (∼93 %) in the single-pass process, effectively overcoming the purity-recovery trade-off correlation. We further demonstrate that negative Li<sup>+</sup> rejection plays a crucial role in overcoming the trade-off correlation by significantly increasing Li<sup>+</sup> recovery. Nevertheless, poor system flux distribution is inadvertently observed in the regions where strong negative rejection occurs, highlighting the need for careful consideration of the balance between system stability and lithium extraction performances. Our study identifies critical membrane parameters for achieving optimal lithium extraction performance at the process scale, offering fundamental insights for designing high-performance membranes for resource recovery.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123678"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005871","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of nanofiltration (NF) membranes for resource recovery, particularly lithium (Li) extraction from high magnesium (Mg) brines, is a rapidly growing research area. However, the trade-off between high Li+ purity and recovery remains challenging. In our study, we extend the widely adopted Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE) to analyze membrane structure-property-performance relationships at the process scale. For the first time, we quantify how membrane intrinsic parameters (e.g., pore size, effective thickness, and charge density) affect Li+ purity and recovery under module-scale processes. Under this framework, we demonstrate that electrically neutral and positively charged membranes outperform negatively charged membranes, albeit at the cost of slightly higher required hydraulic pressure. Notably, positively charged membranes with smaller pore size yet high water permeance (40–80 L m−2 h−1 bar−1) are preferred, which could simultaneously achieve excellent Li+ purity (∼98 %) and high Li+ recovery (∼93 %) in the single-pass process, effectively overcoming the purity-recovery trade-off correlation. We further demonstrate that negative Li+ rejection plays a crucial role in overcoming the trade-off correlation by significantly increasing Li+ recovery. Nevertheless, poor system flux distribution is inadvertently observed in the regions where strong negative rejection occurs, highlighting the need for careful consideration of the balance between system stability and lithium extraction performances. Our study identifies critical membrane parameters for achieving optimal lithium extraction performance at the process scale, offering fundamental insights for designing high-performance membranes for resource recovery.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.