{"title":"Multi-dimensional evaluation of site-specific tillage using mouldboard ploughing","authors":"Yongjing Wang, Abdul M. Mouazen","doi":"10.1016/j.still.2025.106604","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the lack of high-resolution data on soil compaction using proximal sensing technology, mouldboard (MB) ploughing is carried out at uniform speed and depth, which does not necessarily respond to tillage needs due to compaction level and depth that are spatially variable across the field area. This study aims at simulating the comparative performance of different site specific tillage (SST) schemes (e.g., speed and depth) and uniform tillage of a MB plough using a high resolution soil packing density (PD) maps. An on-the-go soil sensing platform was used to predict and map topsoil PD in a Luvisol field in Belgium and two Cambisol fields in Spain. All fields were divided into three management zones, to each of which different tillage speed and depth were assigned based on PD maps. A MATLAB simulation code was developed to predict and compare the power efficiency, fuel consumption, emission of carbon dioxide (CO<sub>2</sub>) from diesel combustion and total operating time of uniform, SST depth, SST speed, and hybrid SST depth and speed MB ploughing schemes. Results revealed that the degree of soil compaction varies from field to field and within fields, which necessitates SST tillage practices. It was found that the depth control was the best performing SST in fields having large areas with low (PD < 1.55) and medium (PD = 1.55 – 1.70) compaction levels, resulting in the largest reduction in draught (33.7 % – 57 %), fuel consumption and CO<sub>2</sub> emission (29.6 % - 50.1 %), while using the same operational time as that of the uniform tillage. However, in cases when the majority of the field area was highly compacted (PD > 1.70), potential savings were smaller at 22.5 %, with the speed control emerged as a more effective control scheme. It is recommended to validate the simulation results of SST of MB ploughing in fields to enable assessing the impacts they have on crop responses and soil quality.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"252 ","pages":"Article 106604"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198725001588","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the lack of high-resolution data on soil compaction using proximal sensing technology, mouldboard (MB) ploughing is carried out at uniform speed and depth, which does not necessarily respond to tillage needs due to compaction level and depth that are spatially variable across the field area. This study aims at simulating the comparative performance of different site specific tillage (SST) schemes (e.g., speed and depth) and uniform tillage of a MB plough using a high resolution soil packing density (PD) maps. An on-the-go soil sensing platform was used to predict and map topsoil PD in a Luvisol field in Belgium and two Cambisol fields in Spain. All fields were divided into three management zones, to each of which different tillage speed and depth were assigned based on PD maps. A MATLAB simulation code was developed to predict and compare the power efficiency, fuel consumption, emission of carbon dioxide (CO2) from diesel combustion and total operating time of uniform, SST depth, SST speed, and hybrid SST depth and speed MB ploughing schemes. Results revealed that the degree of soil compaction varies from field to field and within fields, which necessitates SST tillage practices. It was found that the depth control was the best performing SST in fields having large areas with low (PD < 1.55) and medium (PD = 1.55 – 1.70) compaction levels, resulting in the largest reduction in draught (33.7 % – 57 %), fuel consumption and CO2 emission (29.6 % - 50.1 %), while using the same operational time as that of the uniform tillage. However, in cases when the majority of the field area was highly compacted (PD > 1.70), potential savings were smaller at 22.5 %, with the speed control emerged as a more effective control scheme. It is recommended to validate the simulation results of SST of MB ploughing in fields to enable assessing the impacts they have on crop responses and soil quality.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.