Recyclable bio-based polylactic acid gas-liquid membrane contactor for carbon capture process

Kamyll Dawn Cocon , Alexandre Duvieusart , Cristhian Molina-Fernández , Yusak Hartanto , Patricia Luis
{"title":"Recyclable bio-based polylactic acid gas-liquid membrane contactor for carbon capture process","authors":"Kamyll Dawn Cocon ,&nbsp;Alexandre Duvieusart ,&nbsp;Cristhian Molina-Fernández ,&nbsp;Yusak Hartanto ,&nbsp;Patricia Luis","doi":"10.1016/j.ccst.2025.100428","DOIUrl":null,"url":null,"abstract":"<div><div>The need for sustainable and carbon-neutral technologies is growing due to ambitious climate goals and the depletion of non-renewable resources. Carbon capture and utilization (CCU) is emerging as a key approach to closing the carbon cycle, with membrane-based CO<sub>2</sub> absorption reducing energy demands during the capture process. However, conventional membranes rely on fossil-based polymers and toxic solvents, raising concerns about their environmental impact. This study introduces a bio-based membrane contactor for CCU applications, utilizing polylactic acid (PLA), a renewable and sustainable biopolymer. The influence of polymer concentration, molecular weight, crystallinity, solvent type, and recycling on membrane morphology and CO<sub>2</sub> capture performance was investigated. The PLA membranes exhibited asymmetric morphologies ranging from finger-like to sponge-like structures. Higher polymer concentration and molecular weight increased sponge-like morphology, while solvents with stronger solvating power promoted finger-like structures. Interestingly, initial polymer crystallinity did not influence membrane morphology, but crystallinity induced during synthesis supported sponge-like structures. Membranes made with high molecular weight PLA and wide finger-like morphologies demonstrated stable CO<sub>2</sub> capture performance (2.36 × 10<sup>-</sup>⁵ m³/m²·s), comparable to commercial PVDF membranes (2.47 × 10<sup>-</sup>⁵ m³/m²·s). Furthermore, recycled membranes retained CO<sub>2</sub> capture performance over five cycles (2.04 – 2.26 × 10<sup>-</sup>⁵ m³/m²·s). This study highlights the potential of bio-based membranes to enable energy-efficient and circular CO<sub>2</sub> capture, taking significant steps toward greener, more sustainable CCU technologies.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100428"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The need for sustainable and carbon-neutral technologies is growing due to ambitious climate goals and the depletion of non-renewable resources. Carbon capture and utilization (CCU) is emerging as a key approach to closing the carbon cycle, with membrane-based CO2 absorption reducing energy demands during the capture process. However, conventional membranes rely on fossil-based polymers and toxic solvents, raising concerns about their environmental impact. This study introduces a bio-based membrane contactor for CCU applications, utilizing polylactic acid (PLA), a renewable and sustainable biopolymer. The influence of polymer concentration, molecular weight, crystallinity, solvent type, and recycling on membrane morphology and CO2 capture performance was investigated. The PLA membranes exhibited asymmetric morphologies ranging from finger-like to sponge-like structures. Higher polymer concentration and molecular weight increased sponge-like morphology, while solvents with stronger solvating power promoted finger-like structures. Interestingly, initial polymer crystallinity did not influence membrane morphology, but crystallinity induced during synthesis supported sponge-like structures. Membranes made with high molecular weight PLA and wide finger-like morphologies demonstrated stable CO2 capture performance (2.36 × 10-⁵ m³/m²·s), comparable to commercial PVDF membranes (2.47 × 10-⁵ m³/m²·s). Furthermore, recycled membranes retained CO2 capture performance over five cycles (2.04 – 2.26 × 10-⁵ m³/m²·s). This study highlights the potential of bio-based membranes to enable energy-efficient and circular CO2 capture, taking significant steps toward greener, more sustainable CCU technologies.

Abstract Image

用于碳捕集工艺的可回收生物基聚乳酸气液膜接触器
由于雄心勃勃的气候目标和不可再生资源的枯竭,对可持续和碳中和技术的需求正在增长。碳捕获和利用(CCU)正在成为关闭碳循环的关键方法,膜基二氧化碳吸收减少了捕获过程中的能源需求。然而,传统的膜依赖于化石基聚合物和有毒溶剂,这引起了人们对其环境影响的担忧。本研究介绍了一种应用于CCU的生物基膜接触器,它利用聚乳酸(PLA),一种可再生和可持续的生物聚合物。考察了聚合物浓度、分子量、结晶度、溶剂类型和循环利用对膜形态和CO2捕集性能的影响。聚乳酸膜表现出不对称的形态,从手指状到海绵状结构。较高的聚合物浓度和分子量增加了海绵状结构,而溶剂化能力强的溶剂促进了手指状结构。有趣的是,聚合物的初始结晶度并不影响膜的形态,但在合成过程中诱导的结晶度支持了海绵状结构。由高分子量PLA和宽指状形态制成的膜显示出稳定的二氧化碳捕获性能(2.36 × 10- 5 m³/m²·s),与商用PVDF膜(2.47 × 10- 5 m³/m²·s)相当。此外,再生膜在5个循环(2.04 - 2.26 × 10- 5 m³/m²·s)中保持了CO2捕获性能。这项研究强调了生物基膜在实现节能和循环二氧化碳捕集方面的潜力,朝着更环保、更可持续的CCU技术迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信