Charged fermions and vector bosons in magnetic fields within a spacetime generated by a spinning point source

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Semra Gurtas Dogan , Omar Mustafa , Abdullah Guvendi
{"title":"Charged fermions and vector bosons in magnetic fields within a spacetime generated by a spinning point source","authors":"Semra Gurtas Dogan ,&nbsp;Omar Mustafa ,&nbsp;Abdullah Guvendi","doi":"10.1016/j.nuclphysb.2025.116918","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the relativistic dynamics of charged fermions and vector bosons in magnetic fields within a <span><math><mn>2</mn><mo>+</mo><mn>1</mn></math></span>-dimensional spacetime background generated by a spinning point source. We derive the equations for the charged Dirac oscillator (DO) and charged vector bosons, aiming to find analytical solutions to the resulting wave equations. We identify solutions for both systems by analytically examining the allowed wave equations and analyzing the impact of each parameter on the resulting relativistic energy eigenvalues. Our observations reveal that the spin parameter (<em>ϖ</em>) of the point source can cause symmetry breaking in particle-antiparticle energy states around the Dirac point, an effect that disappears when <span><math><mi>ϖ</mi><mo>=</mo><mn>0</mn></math></span>. However, for charged vector bosons in such a spinning spacetime, the asymmetry between particle-antiparticle states persists even when <span><math><mi>ϖ</mi><mo>=</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1016 ","pages":"Article 116918"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325001270","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the relativistic dynamics of charged fermions and vector bosons in magnetic fields within a 2+1-dimensional spacetime background generated by a spinning point source. We derive the equations for the charged Dirac oscillator (DO) and charged vector bosons, aiming to find analytical solutions to the resulting wave equations. We identify solutions for both systems by analytically examining the allowed wave equations and analyzing the impact of each parameter on the resulting relativistic energy eigenvalues. Our observations reveal that the spin parameter (ϖ) of the point source can cause symmetry breaking in particle-antiparticle energy states around the Dirac point, an effect that disappears when ϖ=0. However, for charged vector bosons in such a spinning spacetime, the asymmetry between particle-antiparticle states persists even when ϖ=0.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信