{"title":"Reinforcing shell elements for fiber-reinforced composites undergoing large deformations and general motion","authors":"Yanhu Li , Yongjie Lu , Jibo Song , Linao Zhang","doi":"10.1016/j.compstruct.2025.119195","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber-reinforced composites offer excellent mechanical properties and lightweight advantages in multibody systems. However, their significant anisotropy and geometrical and material nonlinearities present challenges for accurate modeling and simulation. In this paper, two new types of reinforcing shell elements are developed within the Absolute Nodal Coordinate Formulation framework. The first type assumes that each fiber behaves as an Euler beam with only tensile and bending stiffness, making it suitable for simulating reinforcing fibers with arbitrary orientations and nonuniform materials and cross-section areas. The second type employs elastic force formulation based on Kirchhoff–Love theory or continuum mechanics. It is suitable for simulating reinforcing fibers that appear in a layered form with unique orientation, material, and cross-section area. The fibers and matrix are described independently in these new reinforcing elements, coupled through consistent deformation compatibility conditions. This approach allows different material models and element formulations for the fibers and matrix to be used. Furthermore, multiple fibers (or layers) can be embedded within a single reinforcing shell element, providing more accurate representations of the actual physical structure. The effectiveness of the developed reinforcing elements is validated through several benchmark problems. Numerical results demonstrate that both types of reinforcing shell elements are locking-free and can automatically capture the reinforcing effects of the fibers and the coupled deformation modes. This investigation enriches the element library of the Absolute Nodal Coordinate Formulation and provides an effective tool for the accurate simulation and optimal design of fiber-reinforced composites in multibody systems.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"366 ","pages":"Article 119195"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325003605","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber-reinforced composites offer excellent mechanical properties and lightweight advantages in multibody systems. However, their significant anisotropy and geometrical and material nonlinearities present challenges for accurate modeling and simulation. In this paper, two new types of reinforcing shell elements are developed within the Absolute Nodal Coordinate Formulation framework. The first type assumes that each fiber behaves as an Euler beam with only tensile and bending stiffness, making it suitable for simulating reinforcing fibers with arbitrary orientations and nonuniform materials and cross-section areas. The second type employs elastic force formulation based on Kirchhoff–Love theory or continuum mechanics. It is suitable for simulating reinforcing fibers that appear in a layered form with unique orientation, material, and cross-section area. The fibers and matrix are described independently in these new reinforcing elements, coupled through consistent deformation compatibility conditions. This approach allows different material models and element formulations for the fibers and matrix to be used. Furthermore, multiple fibers (or layers) can be embedded within a single reinforcing shell element, providing more accurate representations of the actual physical structure. The effectiveness of the developed reinforcing elements is validated through several benchmark problems. Numerical results demonstrate that both types of reinforcing shell elements are locking-free and can automatically capture the reinforcing effects of the fibers and the coupled deformation modes. This investigation enriches the element library of the Absolute Nodal Coordinate Formulation and provides an effective tool for the accurate simulation and optimal design of fiber-reinforced composites in multibody systems.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.