Lagrangian Sensor Particles for detecting hydrodynamic heterogeneities in industrial bioreactors: Experimental analysis and Lattice-Boltzmann simulations

IF 5.5 Q1 ENGINEERING, CHEMICAL
Sebastian Hofmann , Ryan Rautenbach , Lukas Buntkiel , Isabel Sophie Brouwers , Lena Gaugler , Jonas Barczyk , Jürgen Fitschen , Sebastian Reinecke , Marko Hoffmann , Ralf Takors , Uwe Hampel , Michael Schlüter
{"title":"Lagrangian Sensor Particles for detecting hydrodynamic heterogeneities in industrial bioreactors: Experimental analysis and Lattice-Boltzmann simulations","authors":"Sebastian Hofmann ,&nbsp;Ryan Rautenbach ,&nbsp;Lukas Buntkiel ,&nbsp;Isabel Sophie Brouwers ,&nbsp;Lena Gaugler ,&nbsp;Jonas Barczyk ,&nbsp;Jürgen Fitschen ,&nbsp;Sebastian Reinecke ,&nbsp;Marko Hoffmann ,&nbsp;Ralf Takors ,&nbsp;Uwe Hampel ,&nbsp;Michael Schlüter","doi":"10.1016/j.ceja.2025.100744","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes trajectories of three particle types in an industrial-scale bioreactor, equipped with a Rushton turbine and a pitched blade turbine, to characterize hydrodynamic compartments. The trajectories obtained from measurements with Lagrangian Sensor Particles (<em>LSP,exp</em>) are compared to those generated by Lattice-Boltzmann large eddy simulations (LB LES). The latter method is used to reproduce analogous simulated LSPs (<em>LSP,sim</em>) as resolved particles. Additionally, for benchmarking purposes, massless tracer particles (<em>tracer,sim</em>) are incorporated to accurately represent fluid flow dynamics. Discrepancies in the axial probability of presence and velocity between <em>LSP,exp</em> and <em>LSP,sim</em> likely stem from differences in mass distribution, density, number of particles, and ratio of particle size to grid. A necessarily high <em>LSP,sim</em> volume fraction in LB LES leads to increased collisions and clustering, negatively impacting flow dynamics, and reducing turbulent kinetic energy by at least 3%. Circulation and residence time distributions for the three types of particles identify three hydrodynamic compartments within the bioreactor, validated by local mixing time distributions. The ratio of overall average circulation time to global mixing time is <span><math><mrow><msub><mrow><mi>Θ</mi></mrow><mrow><mi>glob,95</mi></mrow></msub><mo>≈</mo><mn>3</mn><mo>.</mo><mn>0</mn><mi>⋅</mi><msub><mrow><mover><mrow><mi>t</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>circ</mi></mrow></msub></mrow></math></span> for <em>LSP,exp</em>, which largely corresponds to literature results. A theoretical LSP size of <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>p,th</mi></mrow></msub><mo>≈</mo><mn>1</mn><mspace></mspace><mi>mm</mi></mrow></math></span> is estimated to be flow following on micro-scale in the bulk phase, if a Stokes number of <span><math><mrow><mi>S</mi><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> is assumed. However, Stokes number estimations confirm that <em>LSP,exp</em> are capable to follow flow patterns on the meso-scale and macro-scale with <span><math><mrow><mi>S</mi><mi>t</mi><mo>≈</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>t</mi><mo>≈</mo><mn>0</mn><mo>.</mo><mn>002</mn></mrow></math></span>, respectively. Hence, hydrodynamic structures at length scales greater than or equal to the size of the impeller can be investigated by current state-of-the-art LSPs, which proves their technological readiness for industrial bioreactors.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100744"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes trajectories of three particle types in an industrial-scale bioreactor, equipped with a Rushton turbine and a pitched blade turbine, to characterize hydrodynamic compartments. The trajectories obtained from measurements with Lagrangian Sensor Particles (LSP,exp) are compared to those generated by Lattice-Boltzmann large eddy simulations (LB LES). The latter method is used to reproduce analogous simulated LSPs (LSP,sim) as resolved particles. Additionally, for benchmarking purposes, massless tracer particles (tracer,sim) are incorporated to accurately represent fluid flow dynamics. Discrepancies in the axial probability of presence and velocity between LSP,exp and LSP,sim likely stem from differences in mass distribution, density, number of particles, and ratio of particle size to grid. A necessarily high LSP,sim volume fraction in LB LES leads to increased collisions and clustering, negatively impacting flow dynamics, and reducing turbulent kinetic energy by at least 3%. Circulation and residence time distributions for the three types of particles identify three hydrodynamic compartments within the bioreactor, validated by local mixing time distributions. The ratio of overall average circulation time to global mixing time is Θglob,953.0t¯circ for LSP,exp, which largely corresponds to literature results. A theoretical LSP size of dp,th1mm is estimated to be flow following on micro-scale in the bulk phase, if a Stokes number of St=0.1 is assumed. However, Stokes number estimations confirm that LSP,exp are capable to follow flow patterns on the meso-scale and macro-scale with St0.2 and St0.002, respectively. Hence, hydrodynamic structures at length scales greater than or equal to the size of the impeller can be investigated by current state-of-the-art LSPs, which proves their technological readiness for industrial bioreactors.
拉格朗日传感器粒子用于检测工业生物反应器中的流体动力非均质性:实验分析和格-玻尔兹曼模拟
本研究分析了工业规模生物反应器中三种颗粒类型的轨迹,配备了Rushton涡轮机和斜叶片涡轮机,以表征流体动力隔间。用拉格朗日传感器粒子(LSP,exp)测量得到的轨迹与用晶格-玻尔兹曼大涡模拟(LB LES)得到的轨迹进行了比较。后一种方法用于将类似的模拟LSP (LSP,sim)作为分解粒子再现。此外,为了基准测试的目的,无质量示踪粒子(tracer,sim)被纳入,以准确地表示流体流动动力学。LSP、exp和LSP、sim之间轴向存在概率和速度的差异可能源于质量分布、密度、粒子数量和粒径与网格的比例的差异。在LB LES中,LSP、sim体积分数必须很高,会导致碰撞和聚类增加,对流动动力学产生负面影响,并使湍流动能降低至少3%。三种类型颗粒的循环和停留时间分布确定了生物反应器内的三个流体动力室,并通过局部混合时间分布进行了验证。LSP,exp的总平均循环时间与全局混合时间之比为Θglob,95≈3.0⋅t¯circ,与文献结果基本吻合。假设斯托克斯数St=0.1,理论LSP尺寸为dp,th≈1mm,可以估计为微尺度的体相流随。然而,Stokes数估计证实了LSP和exp分别在St≈0.2和St≈0.002的中尺度和宏观尺度上能够遵循流动模式。因此,目前最先进的LSPs可以研究长度大于或等于叶轮尺寸的水动力结构,这证明了它们在工业生物反应器中的技术成熟度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信