Nanozyme-Energized SERS Sensor for Ultrasensitive Dual-Mode Bacterial Detection

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiyuan Ren, Xiaorui Wang, Bingqing Jia, Xiangdong Liu, Yuanyuan Qu, Weifeng Li, Mingwen Zhao and Yong-Qiang Li*, 
{"title":"Nanozyme-Energized SERS Sensor for Ultrasensitive Dual-Mode Bacterial Detection","authors":"Zhiyuan Ren,&nbsp;Xiaorui Wang,&nbsp;Bingqing Jia,&nbsp;Xiangdong Liu,&nbsp;Yuanyuan Qu,&nbsp;Weifeng Li,&nbsp;Mingwen Zhao and Yong-Qiang Li*,&nbsp;","doi":"10.1021/acsanm.5c0103010.1021/acsanm.5c01030","DOIUrl":null,"url":null,"abstract":"<p >Bacterial infections threaten public health security and impose an enormous medical and financial burden. Rapid, convenient, and ultrasensitive detection of pathogenic bacteria is critical for early diagnosis of bacterial infections. In this work, we develop an oxidase-like surface-enhanced Raman scattering (SERS) sandwich sensor consisting of capture and signal modules for ultrasensitive dual-mode bacterial detection. The bacterial species-identifiable aptamer-modified iron oxide nanoparticle-based capture module can achieve highly efficient bacterial enrichment in trace concentration. The signal module is prepared by loading plasmonic Au nanoparticles into oxidase-like mesoporous MnO<sub>2</sub> nanozymes, followed by concanavalin A functionalization to form high-intensity SERS hotspots. We demonstrate that the signal module can adsorb SERS-inactive TMB molecules near the hotspots and oxidize them into SERS-active oxTMB, achieving significant amplification of the SERS signal. Meanwhile, the color change from colorless TMB to blue oxTMB endows it with a colorimetric sensing capability. By assembling the signal and capture modules with bacteria, the constructed sandwich sensor exhibits ultrahigh dual-mode detection sensitivity (7 CFU/mL for SERS, and 30 CFU/mL for colorimetric) and selectivity toward model pathogenic bacteria of <i>Staphylococcus aureus</i>. Moreover, the sensor enables rapid and accurate bacterial detection in sepsis blood samples, revealing its great potential for early diagnosis of bacterial infections in clinical settings.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 16","pages":"8385–8396 8385–8396"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01030","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial infections threaten public health security and impose an enormous medical and financial burden. Rapid, convenient, and ultrasensitive detection of pathogenic bacteria is critical for early diagnosis of bacterial infections. In this work, we develop an oxidase-like surface-enhanced Raman scattering (SERS) sandwich sensor consisting of capture and signal modules for ultrasensitive dual-mode bacterial detection. The bacterial species-identifiable aptamer-modified iron oxide nanoparticle-based capture module can achieve highly efficient bacterial enrichment in trace concentration. The signal module is prepared by loading plasmonic Au nanoparticles into oxidase-like mesoporous MnO2 nanozymes, followed by concanavalin A functionalization to form high-intensity SERS hotspots. We demonstrate that the signal module can adsorb SERS-inactive TMB molecules near the hotspots and oxidize them into SERS-active oxTMB, achieving significant amplification of the SERS signal. Meanwhile, the color change from colorless TMB to blue oxTMB endows it with a colorimetric sensing capability. By assembling the signal and capture modules with bacteria, the constructed sandwich sensor exhibits ultrahigh dual-mode detection sensitivity (7 CFU/mL for SERS, and 30 CFU/mL for colorimetric) and selectivity toward model pathogenic bacteria of Staphylococcus aureus. Moreover, the sensor enables rapid and accurate bacterial detection in sepsis blood samples, revealing its great potential for early diagnosis of bacterial infections in clinical settings.

Abstract Image

用于超灵敏双模细菌检测的纳米酶激励SERS传感器
细菌感染威胁公共卫生安全,并造成巨大的医疗和经济负担。快速、方便、超灵敏的病原菌检测对于细菌感染的早期诊断至关重要。在这项工作中,我们开发了一种类似氧化酶的表面增强拉曼散射(SERS)三明治传感器,由捕获和信号模块组成,用于超灵敏双模细菌检测。基于细菌种类可识别适配体修饰的氧化铁纳米颗粒捕获模块可以实现微量浓度的高效细菌富集。该信号模块是通过将等离子体Au纳米颗粒加载到氧化酶类介孔MnO2纳米酶中,然后将豆豆蛋白A功能化以形成高强度SERS热点来制备的。我们证明了信号模块可以在热点附近吸附无SERS活性的TMB分子并将其氧化为具有SERS活性的oxTMB,从而实现SERS信号的显著放大。同时,从无色TMB到蓝色TMB的颜色变化使其具有比色感应能力。通过将信号和捕获模块与细菌组装,构建的三明治传感器对金黄色葡萄球菌模型致病菌具有超高的双模检测灵敏度(SERS为7 CFU/mL,比色为30 CFU/mL)和选择性。此外,该传感器可以在脓毒症血液样本中进行快速准确的细菌检测,显示其在临床环境中早期诊断细菌感染的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信