Harish Gudla, Anne Hockmann, Daniel Brandell and Jonas Mindemark*,
{"title":"To Hop or Not to Hop: Unveiling Different Modes of Ion Transport in Solid Polymer Electrolytes through Molecular Dynamics Simulations","authors":"Harish Gudla, Anne Hockmann, Daniel Brandell and Jonas Mindemark*, ","doi":"10.1021/acsapm.4c0372410.1021/acsapm.4c03724","DOIUrl":null,"url":null,"abstract":"<p >Although the basic modes of ion transport in solid polymer electrolytes (SPEs) are already classified and well-described, their distribution in typical polymer electrolytes is not clear and neither are the effects on the distribution by different degrees of ion–ion and ion–polymer interactions. Here, the ion-transport mechanisms in poly(ethylene oxide) are studied along with poly(ε-caprolactone) at different molecular weights and LiTFSI salt concentrations using molecular dynamics simulations. Through tracking of the cation coordination changes, three transport mechanisms are categorized, i.e., ion hopping, continuous motion (successive exchange of the coordination sphere), and vehicular transport. The observed dominant transport mechanism is in all cases continuous motion, which changes from polymer-mediated to anion-mediated with increasing salt concentration, while polymer-mediated vehicular transport is not observed to be a major contributor to cation transport. In both systems, ion hopping is also essentially absent, as can be expected in systems with strong ion–polymer interactions. The results illustrate how the usual description of ion transport in polymer electrolytes as coupled to segmental motions is too simplistic to catch the full essence of the ion-transport phenomena, whereas the frequently used notion of “ion hopping” in the majority of cases is incorrect for SPEs.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 8","pages":"4716–4724 4716–4724"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsapm.4c03724","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c03724","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the basic modes of ion transport in solid polymer electrolytes (SPEs) are already classified and well-described, their distribution in typical polymer electrolytes is not clear and neither are the effects on the distribution by different degrees of ion–ion and ion–polymer interactions. Here, the ion-transport mechanisms in poly(ethylene oxide) are studied along with poly(ε-caprolactone) at different molecular weights and LiTFSI salt concentrations using molecular dynamics simulations. Through tracking of the cation coordination changes, three transport mechanisms are categorized, i.e., ion hopping, continuous motion (successive exchange of the coordination sphere), and vehicular transport. The observed dominant transport mechanism is in all cases continuous motion, which changes from polymer-mediated to anion-mediated with increasing salt concentration, while polymer-mediated vehicular transport is not observed to be a major contributor to cation transport. In both systems, ion hopping is also essentially absent, as can be expected in systems with strong ion–polymer interactions. The results illustrate how the usual description of ion transport in polymer electrolytes as coupled to segmental motions is too simplistic to catch the full essence of the ion-transport phenomena, whereas the frequently used notion of “ion hopping” in the majority of cases is incorrect for SPEs.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.