NiFe-Layered Double Hydroxides Modified with Co–Mo Nitride for the Oxygen Evolution Reaction in Seawater

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xu Zhang, Baochang Gao, Yuan Tian, Yu Shi, Guowei Li, Zhiguo Zhang, Chengwei Han, Li Sun, Jingru Zhang, Bo Liu*, Hongwei Zhang* and Guangyu Bai*, 
{"title":"NiFe-Layered Double Hydroxides Modified with Co–Mo Nitride for the Oxygen Evolution Reaction in Seawater","authors":"Xu Zhang,&nbsp;Baochang Gao,&nbsp;Yuan Tian,&nbsp;Yu Shi,&nbsp;Guowei Li,&nbsp;Zhiguo Zhang,&nbsp;Chengwei Han,&nbsp;Li Sun,&nbsp;Jingru Zhang,&nbsp;Bo Liu*,&nbsp;Hongwei Zhang* and Guangyu Bai*,&nbsp;","doi":"10.1021/acsanm.5c0074010.1021/acsanm.5c00740","DOIUrl":null,"url":null,"abstract":"<p >Direct electrolysis of seawater offers a promising pathway for sustainable hydrogen production while avoiding the issues caused by freshwater shortages. However, the sluggish four-electron transfer kinetics and the competitive adsorption of Cl<sup>–</sup> ions of the oxygen evolution reaction (OER) during seawater electrolysis remain as key challenges in designing effective catalysts. Herein, leveraging the electron-absorbing properties of molybdenum cobalt nitride (CoN/Mo<sub>2</sub>N) to modulate the electronic structure of nickel–iron layered double hydroxide (NiFe-LDH), a nanoscale hierarchical heterostructure of NiFe-LDH coated on CoN/Mo<sub>2</sub>N (CoN/Mo<sub>2</sub>N/LDH) was engineered to achieve highly efficient OER. Operando electrochemical impedance spectroscopy reveals that the heterointerface facilitates charge transport kinetics. Additionally, charge density analysis and adsorption energy calculations confirm that the NiFe-LDH preferentially adsorbs OH<sup>–</sup> over Cl<sup>–</sup> in alkaline seawater. The CoN/Mo<sub>2</sub>N/LDH nanostructure requires only 249 mV overpotential to achieve 500 mA·cm<sup>–2</sup> in 6 M KOH + seawater, maintaining 94.8% of its initial activity over 10 days of continuous operation. This work elucidates the electron-absorption-driven modulation of electronic structures in nitride-regulated LDH nanomaterials, enabling their application in industrial-scale seawater electrolysis. The tailored nanoscale design achieves simultaneous high-efficiency oxygen evolution and exceptional stability, advancing scalable green hydrogen production from seawater.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 16","pages":"8209–8219 8209–8219"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00740","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct electrolysis of seawater offers a promising pathway for sustainable hydrogen production while avoiding the issues caused by freshwater shortages. However, the sluggish four-electron transfer kinetics and the competitive adsorption of Cl ions of the oxygen evolution reaction (OER) during seawater electrolysis remain as key challenges in designing effective catalysts. Herein, leveraging the electron-absorbing properties of molybdenum cobalt nitride (CoN/Mo2N) to modulate the electronic structure of nickel–iron layered double hydroxide (NiFe-LDH), a nanoscale hierarchical heterostructure of NiFe-LDH coated on CoN/Mo2N (CoN/Mo2N/LDH) was engineered to achieve highly efficient OER. Operando electrochemical impedance spectroscopy reveals that the heterointerface facilitates charge transport kinetics. Additionally, charge density analysis and adsorption energy calculations confirm that the NiFe-LDH preferentially adsorbs OH over Cl in alkaline seawater. The CoN/Mo2N/LDH nanostructure requires only 249 mV overpotential to achieve 500 mA·cm–2 in 6 M KOH + seawater, maintaining 94.8% of its initial activity over 10 days of continuous operation. This work elucidates the electron-absorption-driven modulation of electronic structures in nitride-regulated LDH nanomaterials, enabling their application in industrial-scale seawater electrolysis. The tailored nanoscale design achieves simultaneous high-efficiency oxygen evolution and exceptional stability, advancing scalable green hydrogen production from seawater.

Abstract Image

Co-Mo氮化物修饰的nife层双氢氧化物在海水中的析氧反应
直接电解海水为可持续制氢提供了一条有希望的途径,同时避免了淡水短缺造成的问题。然而,海水电解过程中缓慢的四电子转移动力学和析氧反应(OER)中Cl -离子的竞争性吸附仍然是设计有效催化剂的关键挑战。本文利用氮化钼钴(CoN/Mo2N)的电子吸收特性来调节镍铁层状双氢氧化物(NiFe-LDH)的电子结构,设计了一种覆盖在CoN/Mo2N上的NiFe-LDH纳米级分层异质结构(CoN/Mo2N/LDH),以实现高效的OER。Operando电化学阻抗谱分析表明,异质界面有利于电荷输运动力学。此外,电荷密度分析和吸附能计算证实了NiFe-LDH在碱性海水中优先吸附OH -而不是Cl -。CoN/Mo2N/LDH纳米结构在6 M KOH +海水中仅需249 mV过电位即可达到500 mA·cm-2,在连续10天的运行中保持了94.8%的初始活性。这项工作阐明了氮调控LDH纳米材料中电子结构的电子吸收驱动调制,使其能够在工业规模的海水电解中应用。量身定制的纳米级设计同时实现了高效的析氧和卓越的稳定性,推进了可扩展的海水绿色制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信