{"title":"Highly Sensitive Wearable Chromic Force Sensor Utilizing In-Plane Anisotropy in Polydiacetylene Mechanochromism","authors":"Jianlu Zheng, Jiali Chen, Massimiliano Galluzzi, Yuge Hou, Kaori Sugihara","doi":"10.1021/acs.nanolett.5c00085","DOIUrl":null,"url":null,"abstract":"Force sensitivity is a crucial parameter in mechanochromic materials, determining their application range and practical success. In this study, we reveal an unexplored degree of freedom─in-plane anisotropy─for significantly enhancing the force sensitivity of polydiacetylene. Utilizing our newly developed dual nanofriction force/fluorescence microscopy setup, we discovered that force sensitivity reaches its peak when external forces are applied perpendicular to the polymer backbones in-plane. This phenomenon is explained by a “domino effect”, where point loads propagate along the backbones and affect the polymer structure even hundreds of nanometers from the contact point. Leveraging this finding, we developed a highly sensitive, stretchable force sensor and demonstrated that aligning polydiacetylene crystals perpendicular to the force direction increased the sensor’s sensitivity by up to 14-fold.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"5 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00085","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Force sensitivity is a crucial parameter in mechanochromic materials, determining their application range and practical success. In this study, we reveal an unexplored degree of freedom─in-plane anisotropy─for significantly enhancing the force sensitivity of polydiacetylene. Utilizing our newly developed dual nanofriction force/fluorescence microscopy setup, we discovered that force sensitivity reaches its peak when external forces are applied perpendicular to the polymer backbones in-plane. This phenomenon is explained by a “domino effect”, where point loads propagate along the backbones and affect the polymer structure even hundreds of nanometers from the contact point. Leveraging this finding, we developed a highly sensitive, stretchable force sensor and demonstrated that aligning polydiacetylene crystals perpendicular to the force direction increased the sensor’s sensitivity by up to 14-fold.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.