Yang Li, Yanhong Liu, Kun Zhang, Xue Liu, Jiaao Hu, Shenghui Jiao, Sha Luo, Chunhui Ma, Wei Li, Shouxin Liu
{"title":"Ordered Mesoporous Carbon Featuring Single-Crystal Morphology and Tunable Pore Architectures via EtOH-Mediated Micelle Assembly","authors":"Yang Li, Yanhong Liu, Kun Zhang, Xue Liu, Jiaao Hu, Shenghui Jiao, Sha Luo, Chunhui Ma, Wei Li, Shouxin Liu","doi":"10.1002/smll.202502475","DOIUrl":null,"url":null,"abstract":"The precise control of reaction kinetics and the synchronous regulation of the micelle assembly in the soft-templating method for synthesizing ordered mesoporous carbon presents a significant challenge. In this study, a versatile ethanol-mediated self-assembly strategy is introduced to synthesize ordered mesoporous carbons (OMCs) with diverse morphologies and well-defined mesostructures using liquefied wood (LW). Ethanol functions as both a proton-trapping agent and a linker between carbon precursors and templates, enabling fine-tuned regulation of the self-assembly kinetics while providing additional hydrogen bonding interactions. Furthermore, the micelle structure can be precisely manipulated from cylindrical to spherical through ethanol-induced selective swelling of hydrophilic blocks, resulting in a reduction in packing parameter (<i>p)</i> from 1/3 < (<i>p)</i> < 1/2 to (<i>p)</i> ≤ 1/3. Notably, the spherical composite micelles self-assemble into single crystals with highly ordered body-centered mesostructures. The fabricated ordered mesoporous carbon single crystal (OMCSC) electrochemical sensing polymers exhibit absolute enantiomeric discrimination for L- and D-tryptophan. This EtOH-mediated self-assembly approach not only elucidates the role of ethanol in the self-assembly process but also offers a promising pathway for fabricating versatile OMCs from renewable biomass resources.","PeriodicalId":228,"journal":{"name":"Small","volume":"5 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502475","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The precise control of reaction kinetics and the synchronous regulation of the micelle assembly in the soft-templating method for synthesizing ordered mesoporous carbon presents a significant challenge. In this study, a versatile ethanol-mediated self-assembly strategy is introduced to synthesize ordered mesoporous carbons (OMCs) with diverse morphologies and well-defined mesostructures using liquefied wood (LW). Ethanol functions as both a proton-trapping agent and a linker between carbon precursors and templates, enabling fine-tuned regulation of the self-assembly kinetics while providing additional hydrogen bonding interactions. Furthermore, the micelle structure can be precisely manipulated from cylindrical to spherical through ethanol-induced selective swelling of hydrophilic blocks, resulting in a reduction in packing parameter (p) from 1/3 < (p) < 1/2 to (p) ≤ 1/3. Notably, the spherical composite micelles self-assemble into single crystals with highly ordered body-centered mesostructures. The fabricated ordered mesoporous carbon single crystal (OMCSC) electrochemical sensing polymers exhibit absolute enantiomeric discrimination for L- and D-tryptophan. This EtOH-mediated self-assembly approach not only elucidates the role of ethanol in the self-assembly process but also offers a promising pathway for fabricating versatile OMCs from renewable biomass resources.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.