(ReMoV)X2 (X = S, Se) Ternary Alloy Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution Reaction

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-24 DOI:10.1002/smll.202503399
Junaid Ihsan, Ju Yeon Kim, In Hye Kwak, Irtiqa Mishal, Jun Hyeok Choi, Jung Eun Ahn, Sang-Gil Lee, Seung Jo Yoo, Ik Seon Kwon, Jeunghee Park, Hong Seok Kang
{"title":"(ReMoV)X2 (X = S, Se) Ternary Alloy Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution Reaction","authors":"Junaid Ihsan, Ju Yeon Kim, In Hye Kwak, Irtiqa Mishal, Jun Hyeok Choi, Jung Eun Ahn, Sang-Gil Lee, Seung Jo Yoo, Ik Seon Kwon, Jeunghee Park, Hong Seok Kang","doi":"10.1002/smll.202503399","DOIUrl":null,"url":null,"abstract":"Modulating the electronic structure of 2D transition metal dichalcogenides via alloying can extend their potential applications. In this study, composition-tuned ternary alloy nanosheets of (ReMoV)X<sub>2</sub> (X = S and Se) are synthesized using solvothermal and colloidal reactions, respectively. Ternary alloying occurred with homogeneous atomic mixing over a wide range of compositions (<i>x</i><sub>V</sub> = 0.16–0.80). Compared to (ReV)X<sub>2</sub> binary alloying, ternary alloying produces a more metallic phase with less oxidation. Increasing <i>x</i><sub>V</sub> induces a phase change into a more metallic 1T phase. The (ReMoV)S<sub>2</sub> nanosheets demonstrate enhanced electrocatalytic activity toward the acidic hydrogen evolution reaction (HER) compared to (ReV)S<sub>2</sub>. Density functional theory calculations predict that ternary alloying increases the metallicity of the nanosheets. In addition, the Gibbs free energy calculation for hydrogen adsorption (ΔG<sub>H*</sub>) shows that ternary alloying effectively activates the basal S atoms for the HER, supporting the enhanced catalytic performance observed experimentally.","PeriodicalId":228,"journal":{"name":"Small","volume":"71 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202503399","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modulating the electronic structure of 2D transition metal dichalcogenides via alloying can extend their potential applications. In this study, composition-tuned ternary alloy nanosheets of (ReMoV)X2 (X = S and Se) are synthesized using solvothermal and colloidal reactions, respectively. Ternary alloying occurred with homogeneous atomic mixing over a wide range of compositions (xV = 0.16–0.80). Compared to (ReV)X2 binary alloying, ternary alloying produces a more metallic phase with less oxidation. Increasing xV induces a phase change into a more metallic 1T phase. The (ReMoV)S2 nanosheets demonstrate enhanced electrocatalytic activity toward the acidic hydrogen evolution reaction (HER) compared to (ReV)S2. Density functional theory calculations predict that ternary alloying increases the metallicity of the nanosheets. In addition, the Gibbs free energy calculation for hydrogen adsorption (ΔGH*) shows that ternary alloying effectively activates the basal S atoms for the HER, supporting the enhanced catalytic performance observed experimentally.

Abstract Image

增强电催化析氢反应的(ReMoV)X2 (X = S, Se)三元合金纳米片
通过合金化方法调制二维过渡金属二硫族化合物的电子结构可以扩大其潜在的应用范围。在本研究中,分别采用溶剂热反应和胶体反应合成了(ReMoV)X2 (X = S和Se)三元合金纳米片。三元合金化发生在均匀的原子混合中,在广泛的成分范围内(xV = 0.16-0.80)。与(ReV)X2二元合金化相比,三元合金化产生更少氧化的金属相。增加xV诱导相变为更金属化的1T相。与(ReV)S2相比,(ReMoV)S2纳米片对酸性析氢反应(HER)具有更强的电催化活性。密度泛函理论计算预测三元合金化增加了纳米片的金属丰度。此外,氢吸附的吉布斯自由能计算(ΔGH*)表明,三元合金有效地激活了HER的基S原子,支持了实验观察到的增强的催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信