A Strong Interfacial Adhesion and High Stress Dissipation Binder for Durable Microsized SiOx Anodes

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziqiao Yan, Xiujuan Wei, Wenwei Zhang, Lin Xu, Jie Zhang, Shuxing Wu, Kai-Hang Ye, Zeheng Li, Zhan Lin, Jun Lu
{"title":"A Strong Interfacial Adhesion and High Stress Dissipation Binder for Durable Microsized SiOx Anodes","authors":"Ziqiao Yan, Xiujuan Wei, Wenwei Zhang, Lin Xu, Jie Zhang, Shuxing Wu, Kai-Hang Ye, Zeheng Li, Zhan Lin, Jun Lu","doi":"10.1002/adfm.202503136","DOIUrl":null,"url":null,"abstract":"The rapid capacity decay of microsized SiO<sub>x</sub> anode resulting from large volume change hinders its commercial application. Herein, a polymer binder with strong interfacial adhesion and high stress dissipation is designed to alleviate the volume change of microsized SiO<sub>x</sub> anode and maintain structural integrity of electrode. The density functional theory calculations (DFT) and X-ray photoelectron spectroscopy (XPS) reveal that the multifunctional polymeric network enhances interfacial contact between the binder and silicon oxide (SiO<sub>x</sub>) particles through gradient hydrogen bonds. Additionally, the designed binder exhibits high mechanical strength and self-healing function via the synergy of supramolecular and covalent chemistry. The designed binder enables SiO<sub>x</sub> electrodes to exhibit notable cycling stability and superior rate performances. This work provides valuable insights into the structure-function relationship of binder for high-capacity SiO<sub>x</sub> anodes.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202503136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid capacity decay of microsized SiOx anode resulting from large volume change hinders its commercial application. Herein, a polymer binder with strong interfacial adhesion and high stress dissipation is designed to alleviate the volume change of microsized SiOx anode and maintain structural integrity of electrode. The density functional theory calculations (DFT) and X-ray photoelectron spectroscopy (XPS) reveal that the multifunctional polymeric network enhances interfacial contact between the binder and silicon oxide (SiOx) particles through gradient hydrogen bonds. Additionally, the designed binder exhibits high mechanical strength and self-healing function via the synergy of supramolecular and covalent chemistry. The designed binder enables SiOx electrodes to exhibit notable cycling stability and superior rate performances. This work provides valuable insights into the structure-function relationship of binder for high-capacity SiOx anodes.

Abstract Image

一种用于耐用微尺寸SiOx阳极的强界面附着力和高应力耗散粘合剂
微尺寸SiOx阳极由于体积变化大导致容量衰减快,阻碍了其商业化应用。本文设计了一种界面附着力强、应力耗散高的聚合物粘结剂,以减轻微尺寸SiOx阳极的体积变化,保持电极的结构完整性。密度泛函理论计算(DFT)和x射线光电子能谱(XPS)表明,该多功能聚合物网络通过梯度氢键增强了粘结剂与氧化硅(SiOx)颗粒之间的界面接触。此外,所设计的粘合剂通过超分子和共价化学的协同作用表现出高机械强度和自修复功能。所设计的粘合剂使SiOx电极具有显著的循环稳定性和优越的速率性能。这项工作为高容量SiOx阳极粘结剂的结构-功能关系提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信