{"title":"Ionic Liquid-Based Reversible Metal Electrodeposition for Adaptive Radiative Thermoregulation Under Extreme Environments","authors":"Jiawei Liang, Chenxi Sui, Jiacheng Tian, Genesis Higueros, Ting-Hsuan Chen, Ronghui Wu, Pei-Jan Hung, Yang Deng, Natalie Rozman, Willie John Padilla, Po-Chun Hsu","doi":"10.1002/adfm.202419087","DOIUrl":null,"url":null,"abstract":"This paper presents the development of an electrochemically-driven variable emission thermoregulating device designed for efficient radiative heat management across various temperature environments. Utilizing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF<sub>4</sub>), the study explores its thermal and electrochemical stability, low vapor pressure, and excellent performance over a wide operational temperature range, making it an ideal electrolyte. The device uses mid-infrared electrochromic technology, employing ultra-wideband transparent conductive electrodes and reversible metal electrodeposition to dynamically adjust thermal emissivity between 0.06 and 0.89. This capability allows for significant improvements in heat management, offering a responsive and adaptable solution compared to current systems. The findings suggest that such advanced materials and mechanisms can enhance energy management in spacecraft, potentially extending to other space fields requiring precise thermal control.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the development of an electrochemically-driven variable emission thermoregulating device designed for efficient radiative heat management across various temperature environments. Utilizing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), the study explores its thermal and electrochemical stability, low vapor pressure, and excellent performance over a wide operational temperature range, making it an ideal electrolyte. The device uses mid-infrared electrochromic technology, employing ultra-wideband transparent conductive electrodes and reversible metal electrodeposition to dynamically adjust thermal emissivity between 0.06 and 0.89. This capability allows for significant improvements in heat management, offering a responsive and adaptable solution compared to current systems. The findings suggest that such advanced materials and mechanisms can enhance energy management in spacecraft, potentially extending to other space fields requiring precise thermal control.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.