Composite polymer electrolytes containing Co(NO3)2 can construct Li3N-rich interfacial layers in lithium-metal batteries

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Hui Li, Hongfang Jiu, Lixin Zhang, Jinfeng Ma, Qian Xu, Yahui Wang, Xintong Chai, Kai Chen, Yunkai Zhang, Fan Wu
{"title":"Composite polymer electrolytes containing Co(NO3)2 can construct Li3N-rich interfacial layers in lithium-metal batteries","authors":"Hui Li, Hongfang Jiu, Lixin Zhang, Jinfeng Ma, Qian Xu, Yahui Wang, Xintong Chai, Kai Chen, Yunkai Zhang, Fan Wu","doi":"10.1016/j.electacta.2025.146305","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries (LMBs) hold significant promise for energy storage applications, yet they are hindered by low ionic conductivity and severe interfacial issues with the electrolyte. In this study, we developed a Co(NO<sub>3</sub>)<sub>2</sub>@CPEs system to address these challenges. By incorporating Co(NO<sub>3</sub>)<sub>2</sub> additives and LLZTO nanoparticles into the PEO matrix, we aimed to reduce PEO crystallization and enhance Li<sup>+</sup> transport. Additionally, this approach facilitated the formation of a Li3N-rich solid electrolyte interphase (SEI) layer. The study demonstrate that the inclusion of Co(NO<sub>3</sub>)<sub>2</sub> promotes the generation of more Li<sub>3</sub>N, LiF, and Li<sub>2</sub>Co. These inorganic components significantly improve Li<sup>+</sup> transport and help prevent the uneven deposition of lithium metal. Co(NO<sub>3</sub>)<sub>2</sub>@CPEs has an ionic conductivity of 4.96 × 10<sup>-4</sup> S·cm<sup>-2</sup> at 60°C (ionic conductivity of 2.4 × 10<sup>-5</sup> S·cm<sup>-2</sup> at 30°C), a Li<sup>+</sup> migration number of 0.41, and an electrochemical window of 4.5 V. In addition, the lithium-symmetric battery can be stably cycled for 800 h at a current density of 0.2 mA·cm<sup>-2</sup>. The lithium metal battery with lithium iron phosphate (LiFePO<sub>4</sub>) as the cathode, on the other hand, has good multiplication capability and cycling stability, in which it can be cycled for 200 revolutions at 0.5 C and has an initial specific capacity of 148.08 mAh·g<sup>-1</sup>.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"23 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.146305","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries (LMBs) hold significant promise for energy storage applications, yet they are hindered by low ionic conductivity and severe interfacial issues with the electrolyte. In this study, we developed a Co(NO3)2@CPEs system to address these challenges. By incorporating Co(NO3)2 additives and LLZTO nanoparticles into the PEO matrix, we aimed to reduce PEO crystallization and enhance Li+ transport. Additionally, this approach facilitated the formation of a Li3N-rich solid electrolyte interphase (SEI) layer. The study demonstrate that the inclusion of Co(NO3)2 promotes the generation of more Li3N, LiF, and Li2Co. These inorganic components significantly improve Li+ transport and help prevent the uneven deposition of lithium metal. Co(NO3)2@CPEs has an ionic conductivity of 4.96 × 10-4 S·cm-2 at 60°C (ionic conductivity of 2.4 × 10-5 S·cm-2 at 30°C), a Li+ migration number of 0.41, and an electrochemical window of 4.5 V. In addition, the lithium-symmetric battery can be stably cycled for 800 h at a current density of 0.2 mA·cm-2. The lithium metal battery with lithium iron phosphate (LiFePO4) as the cathode, on the other hand, has good multiplication capability and cycling stability, in which it can be cycled for 200 revolutions at 0.5 C and has an initial specific capacity of 148.08 mAh·g-1.

Abstract Image

含Co(NO3)2的复合聚合物电解质可以在锂金属电池中构建富li3n界面层
锂金属电池(lmb)在能量存储应用中具有重要的前景,但它们受到低离子电导率和电解质严重界面问题的阻碍。在本研究中,我们开发了Co(NO3)2@CPEs系统来解决这些挑战。通过在PEO基体中加入Co(NO3)2添加剂和LLZTO纳米颗粒,我们旨在减少PEO的结晶,增强Li+的输运。此外,这种方法促进了富li3n固体电解质间相(SEI)层的形成。研究表明,Co(NO3)2的加入促进了Li3N、LiF和Li2Co的生成。这些无机成分显著改善了锂离子的输运,有助于防止金属锂的不均匀沉积。Co(NO3)2@CPEs在60℃时离子电导率为4.96 × 10-4 S·cm-2(在30℃时离子电导率为2.4 × 10-5 S·cm-2), Li+迁移数为0.41,电化学窗口为4.5 V。此外,该锂对称电池在0.2 mA·cm-2电流密度下可稳定循环800 h。而以磷酸铁锂(LiFePO4)为正极的锂金属电池则具有良好的倍增能力和循环稳定性,在0.5℃下可循环200转,初始比容量为148.08 mAh·g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信