{"title":"Cholesterol-dependent dimerization and conformational dynamics of EphA2 receptors from coarse-grained and all-atom simulations","authors":"Amita Rani Sahoo, Nisha Bhattarai, Matthias Buck","doi":"10.1016/j.str.2025.03.014","DOIUrl":null,"url":null,"abstract":"The EphA2 transmembrane receptor regulates cellular growth, differentiation, and motility, and its overexpression in various cancers makes it a potential biomarker for clinical cancer management. EphA2 signaling occurs through ligand-induced dimerization where the transmembrane (TM) and juxtamembrane (JM) domains play crucial roles in stabilizing the dimer conformations, thereby facilitating signal transduction. Electrostatic interactions between basic JM residues and signaling lipids (PIP2 and PIP3) regulate phosphorylation while cholesterol’s potential role in modulating EphA2 activation remains unclear. To investigate this, we modeled the TM-full JM peptide of EphA2 and employed coarse-grain and all-atom simulations to investigate its dimerization in cholesterol-rich and cholesterol-deficient membranes. Our findings reveal that cholesterol stabilizes specific TM dimers and TM-JM interactions with PIP2, highlighting the importance of membrane composition in EphA2 dimerization, oligomerization, and clustering. These insights enhance our understanding of lipid-mediated regulation of EphA2 and its implications in receptor signaling and cancer progression.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"44 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.03.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The EphA2 transmembrane receptor regulates cellular growth, differentiation, and motility, and its overexpression in various cancers makes it a potential biomarker for clinical cancer management. EphA2 signaling occurs through ligand-induced dimerization where the transmembrane (TM) and juxtamembrane (JM) domains play crucial roles in stabilizing the dimer conformations, thereby facilitating signal transduction. Electrostatic interactions between basic JM residues and signaling lipids (PIP2 and PIP3) regulate phosphorylation while cholesterol’s potential role in modulating EphA2 activation remains unclear. To investigate this, we modeled the TM-full JM peptide of EphA2 and employed coarse-grain and all-atom simulations to investigate its dimerization in cholesterol-rich and cholesterol-deficient membranes. Our findings reveal that cholesterol stabilizes specific TM dimers and TM-JM interactions with PIP2, highlighting the importance of membrane composition in EphA2 dimerization, oligomerization, and clustering. These insights enhance our understanding of lipid-mediated regulation of EphA2 and its implications in receptor signaling and cancer progression.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.