Nanochanneling and Local Crystallization Engineering Accelerate Multiphase Single-Atom Catalysis for Rapid Water Decontamination

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ya Liu, Yuxian Wang, Yupeng Wang, Jie Miao, Jiajia Yang, Kunsheng Hu, Hongqi Sun, Jiadong Xiao, Chunmao Chen, Xiaoguang Duan, Shaobin Wang
{"title":"Nanochanneling and Local Crystallization Engineering Accelerate Multiphase Single-Atom Catalysis for Rapid Water Decontamination","authors":"Ya Liu, Yuxian Wang, Yupeng Wang, Jie Miao, Jiajia Yang, Kunsheng Hu, Hongqi Sun, Jiadong Xiao, Chunmao Chen, Xiaoguang Duan, Shaobin Wang","doi":"10.1002/anie.202504571","DOIUrl":null,"url":null,"abstract":"Precise engineering single-atom catalysts (SACs) with optimal hierarchical structures and favorable local chemical environment remains a significant challenge to cater for multiphase heterogeneous processes. Here, we develop a universal strategy for synthesizing channel-digging microspherical SACs that markedly enhance gas–liquid–solid mass transfer and fine-tune the thermodynamics of catalytic ozonation. By catalytically graphitizing carbon microspheres and selectively etching amorphous carbon domains via mild combustion, we fabricate cross-linked hierarchical graphitic nanochannels confining transition metal (e.g., Co, Cr, Mn, Fe, Ni) single atoms (TMCSs-Air). This nanoenvironment engineering increases interfacial O3 mass transfer by 3.2-fold and directs O3 adsorption from a conventional “end-on” to a bidental “side-on” configuration. The enhanced inter-orbital electronic interactions lower the O3 activation barrier and form highly oxidizing surface-confined O3 (*O3). Consequently, the CoCSs-Air catalyst achieves a 3.6-fold higher ozone utilization efficiency and a 4.2-fold greater turnover frequency (TOF = 1580 min−1) compared with pristine Co-SAC-doped carbon microspheres. Technical and economic evaluations further confirm the feasibility of TMCSs-Air nanoreactors in treating real-world petrochemical wastewater, highlighting its broader potential in overcoming gas diffusion barriers and tuning reaction pathways for multiphase heterogeneous catalysis.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"7 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504571","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise engineering single-atom catalysts (SACs) with optimal hierarchical structures and favorable local chemical environment remains a significant challenge to cater for multiphase heterogeneous processes. Here, we develop a universal strategy for synthesizing channel-digging microspherical SACs that markedly enhance gas–liquid–solid mass transfer and fine-tune the thermodynamics of catalytic ozonation. By catalytically graphitizing carbon microspheres and selectively etching amorphous carbon domains via mild combustion, we fabricate cross-linked hierarchical graphitic nanochannels confining transition metal (e.g., Co, Cr, Mn, Fe, Ni) single atoms (TMCSs-Air). This nanoenvironment engineering increases interfacial O3 mass transfer by 3.2-fold and directs O3 adsorption from a conventional “end-on” to a bidental “side-on” configuration. The enhanced inter-orbital electronic interactions lower the O3 activation barrier and form highly oxidizing surface-confined O3 (*O3). Consequently, the CoCSs-Air catalyst achieves a 3.6-fold higher ozone utilization efficiency and a 4.2-fold greater turnover frequency (TOF = 1580 min−1) compared with pristine Co-SAC-doped carbon microspheres. Technical and economic evaluations further confirm the feasibility of TMCSs-Air nanoreactors in treating real-world petrochemical wastewater, highlighting its broader potential in overcoming gas diffusion barriers and tuning reaction pathways for multiphase heterogeneous catalysis.
纳米通道和局部结晶工程加速多相单原子催化,实现快速水净化
具有最佳层次结构和良好局部化学环境的精确工程单原子催化剂(SACs)是满足多相非均相过程的重大挑战。在这里,我们开发了一种通用的策略来合成挖掘通道的微球形SACs,它显着增强气-液-固传质并微调催化臭氧化的热力学。通过催化石墨化碳微球,并通过轻度燃烧选择性蚀刻非晶态碳畴,我们制造了限制过渡金属(如Co, Cr, Mn, Fe, Ni)单原子的交联分层石墨纳米通道(TMCSs-Air)。这种纳米环境工程将O3的界面传质提高了3.2倍,并将O3的吸附从传统的“端对”转变为双侧“侧对”结构。轨道间电子相互作用的增强降低了O3的激活势垒,形成了高度氧化的表面受限O3 (*O3)。因此,与原始的co - sac掺杂碳微球相比,cocs - air催化剂的臭氧利用效率提高了3.6倍,周转频率(TOF = 1580 min−1)提高了4.2倍。技术和经济评估进一步证实了TMCSs-Air纳米反应器处理实际石化废水的可行性,突出了其在克服气体扩散障碍和调整多相非均相催化反应途径方面的广阔潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信