Yanze Song, Zhidong Pan, Chengming Luo, Yue Wang, Tao Zheng, Yuan Pan, Nabuqi Bu, Ruiyang Xu, Nengjie Huo
{"title":"Ferroelectric α-In2Se3 Semi-floating Gate Transistors for Multilevel Memory and Optoelectronic Logic Gate","authors":"Yanze Song, Zhidong Pan, Chengming Luo, Yue Wang, Tao Zheng, Yuan Pan, Nabuqi Bu, Ruiyang Xu, Nengjie Huo","doi":"10.1021/acsami.5c01586","DOIUrl":null,"url":null,"abstract":"Progress in artificial intelligence (AI) demands efficient data storage and high-speed processing. Traditional von Neumann architecture, with space separation of memory and computing units, struggles with increased data transmission, causing power inefficiency and date latency. To address this challenge, we designed a semi-floating gate transistor (SFGT) that integrates data storage and logical operation into a single device by employing a ferroelectric semiconductor α-In<sub>2</sub>Se<sub>3</sub> as a semi-floating gate layer. Leveraging the ferroelectric polarization of α-In<sub>2</sub>Se<sub>3</sub>, the device exhibits improved non-volatile memory performance with a high program/erase ratio of 1 × 10<sup>6</sup> and reliable durability over 1000 cycles. Through the dual-gate modulation, the SFGT achieves multilevel storage function with at least seven controllable programming states and performs three types of digital logic gate operations (“AND”, “NOR”, and “OR”) at an ultralow bias of 10 mV. Compared to traditional FGT architectures, the α-In<sub>2</sub>Se<sub>3</sub>-based semi-floating gate structure achieves multifunctional integration of data storage and logic computing, effectively addressing energy consumption and time delay issues in data transmission, making it highly significant for applications in data-intensive and low-power integrated circuits.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01586","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Progress in artificial intelligence (AI) demands efficient data storage and high-speed processing. Traditional von Neumann architecture, with space separation of memory and computing units, struggles with increased data transmission, causing power inefficiency and date latency. To address this challenge, we designed a semi-floating gate transistor (SFGT) that integrates data storage and logical operation into a single device by employing a ferroelectric semiconductor α-In2Se3 as a semi-floating gate layer. Leveraging the ferroelectric polarization of α-In2Se3, the device exhibits improved non-volatile memory performance with a high program/erase ratio of 1 × 106 and reliable durability over 1000 cycles. Through the dual-gate modulation, the SFGT achieves multilevel storage function with at least seven controllable programming states and performs three types of digital logic gate operations (“AND”, “NOR”, and “OR”) at an ultralow bias of 10 mV. Compared to traditional FGT architectures, the α-In2Se3-based semi-floating gate structure achieves multifunctional integration of data storage and logic computing, effectively addressing energy consumption and time delay issues in data transmission, making it highly significant for applications in data-intensive and low-power integrated circuits.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.