Scalable Fe‐Rich Corroded Steel Wool Electrodes for Industrial Anion Exchange Membrane Water Electrolysis with a Two‐Order‐of‐Magnitude Cost Reduction

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sinyoung Jang, Jinhong Kim, Sung Hoon Ahn
{"title":"Scalable Fe‐Rich Corroded Steel Wool Electrodes for Industrial Anion Exchange Membrane Water Electrolysis with a Two‐Order‐of‐Magnitude Cost Reduction","authors":"Sinyoung Jang, Jinhong Kim, Sung Hoon Ahn","doi":"10.1002/adfm.202503677","DOIUrl":null,"url":null,"abstract":"Alkaline‐based anion exchange membrane water electrolysis (AEMWE) plays a crucial role in sustainable hydrogen production. However, conventional electrode designs rely on expensive nickel‐based materials and complex fabrication processes, limiting their scalability. This study presents a cost‐effective and scalable approach that transforms ultralow‐cost steel wool into freestanding electrodes for industrial‐scale AEMWE. The fibrous structure, anchoring an activated nickel–iron layered double hydroxide catalyst, enables a highly active bifunctional electrode, achieving 1 A cm⁻<jats:sup>2</jats:sup> at 1.815 V with an ultralow degradation rate of ≈0.041 mV h⁻¹ over 1800 h. Unlike conventional electrodes, the interwoven fibrous matrix eliminates the need for porous transport layers and forms an interlocking interface with the membrane, significantly enhancing performance and durability. Under industrial conditions, a prototype AEMWE single stack (≈16 cm<jats:sup>2</jats:sup>) delivers over 16 A at 1.8 V and nearly 30 A at 2.0 V, maintaining stable operation over 400 h under dynamic conditions. This iron‐rich system, based on a scalable one‐pot corrosion process, enables the upcycling of mass‐produced steel wool into 2 m scale electrodes at a cost of 4.59 USD m⁻<jats:sup>2</jats:sup>, over 200 times cheaper than conventional nickel‐based electrodes. These findings establish a new paradigm for cost‐efficient and durable electrode design in industrial AEMWE applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202503677","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline‐based anion exchange membrane water electrolysis (AEMWE) plays a crucial role in sustainable hydrogen production. However, conventional electrode designs rely on expensive nickel‐based materials and complex fabrication processes, limiting their scalability. This study presents a cost‐effective and scalable approach that transforms ultralow‐cost steel wool into freestanding electrodes for industrial‐scale AEMWE. The fibrous structure, anchoring an activated nickel–iron layered double hydroxide catalyst, enables a highly active bifunctional electrode, achieving 1 A cm⁻2 at 1.815 V with an ultralow degradation rate of ≈0.041 mV h⁻¹ over 1800 h. Unlike conventional electrodes, the interwoven fibrous matrix eliminates the need for porous transport layers and forms an interlocking interface with the membrane, significantly enhancing performance and durability. Under industrial conditions, a prototype AEMWE single stack (≈16 cm2) delivers over 16 A at 1.8 V and nearly 30 A at 2.0 V, maintaining stable operation over 400 h under dynamic conditions. This iron‐rich system, based on a scalable one‐pot corrosion process, enables the upcycling of mass‐produced steel wool into 2 m scale electrodes at a cost of 4.59 USD m⁻2, over 200 times cheaper than conventional nickel‐based electrodes. These findings establish a new paradigm for cost‐efficient and durable electrode design in industrial AEMWE applications.
可伸缩的富铁腐蚀钢丝绒电极,用于工业阴离子交换膜电解,成本降低了两个数量级
碱性阴离子交换膜电解(AEMWE)在可持续制氢中起着至关重要的作用。然而,传统的电极设计依赖于昂贵的镍基材料和复杂的制造工艺,限制了它们的可扩展性。本研究提出了一种具有成本效益和可扩展性的方法,将超低成本的钢丝绒转化为工业规模AEMWE的独立电极。纤维结构,锚定一个活化的镍铁层状双氢氧化物催化剂,使一个高活性的双功能电极,在1.815 V时达到1 a cm⁻2,在1800小时内的超低降解率≈0.041 mV h⁻1。与传统电极不同,交织的纤维基质不需要多孔传输层,与膜形成联锁界面,显着提高了性能和耐用性。在工业条件下,AEMWE单堆叠原型(≈16 cm2)在1.8 V时输出超过16 a,在2.0 V时输出近30 a,在动态条件下保持400小时的稳定运行。这种富含铁的系统,基于可扩展的一锅腐蚀工艺,可以将大量生产的钢丝绒升级为2米尺度的电极,成本为4.59美元m - 2,比传统的镍基电极便宜200多倍。这些发现为工业AEMWE应用中具有成本效益和耐用性的电极设计建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信