Lowering Toxicity of Solvent in Organic Solar Cells Manufacturing for 20% Efficiency

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rui Zeng, Fei Han, Wenkai Zhong, Ming Zhang, Senke Tan, Yi Lin, Jiawei Deng, Guanqing Zhou, Lixuan Kan, Lei Zhu, Xingyu Gao, Jinge Zhu, Wutong Zhao, Shengjie Xu, Xiaonan Xue, Bonan Hao, Zichun Zhou, Xuefei Wu, Cheng Wang, Zachary Fink, Zheng Tang, Hao Jing, Thomas P. Russell, Yongming Zhang, Feng Liu
{"title":"Lowering Toxicity of Solvent in Organic Solar Cells Manufacturing for 20% Efficiency","authors":"Rui Zeng,&nbsp;Fei Han,&nbsp;Wenkai Zhong,&nbsp;Ming Zhang,&nbsp;Senke Tan,&nbsp;Yi Lin,&nbsp;Jiawei Deng,&nbsp;Guanqing Zhou,&nbsp;Lixuan Kan,&nbsp;Lei Zhu,&nbsp;Xingyu Gao,&nbsp;Jinge Zhu,&nbsp;Wutong Zhao,&nbsp;Shengjie Xu,&nbsp;Xiaonan Xue,&nbsp;Bonan Hao,&nbsp;Zichun Zhou,&nbsp;Xuefei Wu,&nbsp;Cheng Wang,&nbsp;Zachary Fink,&nbsp;Zheng Tang,&nbsp;Hao Jing,&nbsp;Thomas P. Russell,&nbsp;Yongming Zhang,&nbsp;Feng Liu","doi":"10.1002/adma.202501812","DOIUrl":null,"url":null,"abstract":"<p>Thin film organic photovoltaics (OPVs) aim to harness solar energy environmentally friendly, highly efficient, and cost-effective means, thereby offering a sustainable solution for energy production and ecological preservation. Efforts are undertook to optimize engineering preparation technology for OPV devices and mini-modules, through the development of low-ecological-impact solvent processing method. A newly developed solvent engineering strategy employing environmentally benign <i>o</i>-xylene (OXY) with synergistic dual additives (DIM and DIB) achieved an optimal power conversion efficiency (PCE) of 20.0% (<i>J</i><sub>SC</sub> of 26.6 mA cm<sup>−2</sup>, <i>V</i><sub>OC</sub> of 0.935 V, FF of 80.3%) alongside exceptional stability metrics (82%–1500h). The mini-module processed with optimized TCE:OXY (1:3 v/v) solvent demonstrated scalable performance reaching 17.6% (18.4 cm<sup>2</sup>), representing the highest performance achieved in the development safe solvent based OPVs. Suitable microscale patterns contributed to a broader range of receiving angles, enabling more flexible installation geometries for building-integrated applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 28","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202501812","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin film organic photovoltaics (OPVs) aim to harness solar energy environmentally friendly, highly efficient, and cost-effective means, thereby offering a sustainable solution for energy production and ecological preservation. Efforts are undertook to optimize engineering preparation technology for OPV devices and mini-modules, through the development of low-ecological-impact solvent processing method. A newly developed solvent engineering strategy employing environmentally benign o-xylene (OXY) with synergistic dual additives (DIM and DIB) achieved an optimal power conversion efficiency (PCE) of 20.0% (JSC of 26.6 mA cm−2, VOC of 0.935 V, FF of 80.3%) alongside exceptional stability metrics (82%–1500h). The mini-module processed with optimized TCE:OXY (1:3 v/v) solvent demonstrated scalable performance reaching 17.6% (18.4 cm2), representing the highest performance achieved in the development safe solvent based OPVs. Suitable microscale patterns contributed to a broader range of receiving angles, enabling more flexible installation geometries for building-integrated applications.

Abstract Image

Abstract Image

Abstract Image

有机太阳能电池制造中溶剂毒性降低20%效率
薄膜有机光伏(opv)旨在利用太阳能环保,高效,成本效益的手段,从而为能源生产和生态保护提供可持续的解决方案。通过开发低生态影响的溶剂处理方法,致力于优化OPV器件和微型模块的工程制备技术。新开发的溶剂工程策略采用环境友好的邻二甲苯(OXY)和协同双添加剂(DIM和DIB),实现了20.0%的最佳功率转换效率(PCE) (JSC为26.6 mA cm - 2, VOC为0.935 V, FF为80.3%)以及出色的稳定性指标(82%-1500h)。经过优化的TCE:OXY (1:3 v/v)溶剂处理的迷你模块显示出可扩展性能达到17.6% (18.4 cm2),代表了开发安全溶剂基opv的最高性能。合适的微尺度模式有助于更广泛的接收角度范围,为建筑集成应用提供更灵活的安装几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信