{"title":"Probe the Role of Oxygen Anionic Redox in High‐Energy‐Density Battery with Advanced Characterization Techniques","authors":"Qianwen Dong, Junxiu Wu, Jun Lu","doi":"10.1002/aenm.202500282","DOIUrl":null,"url":null,"abstract":"The rapid advancement of the new energy industry has resulted in an urgent demand for batteries with superior energy density. To this end, oxygen anionic redox (OAR) emerges as a new paradigm for significantly enhancing battery energy density, which is initially explored in diverse battery systems. Although the feasibility of OAR in various cathode materials is affirmed, it is essential to consider the inevitable consequent issues, such as the irreversibility of OAR process and potential damage to electrode structure. To achieve a comprehensive understanding and effectively leverage the potential of OAR for high‐energy‐density batteries, extensive research has focused on the performance enhancement and failure mechanisms of OAR in different battery systems. However, owing to the limitation of the characterization techniques, a systematic and comprehensive research approaches for studying OAR is lacking. Herein, combing the advanced characterization techniques, an overview is provided from local OAR to full OAR in different cathodes, in which the triggers, working processes and challenges associated with OAR are presented. This perspective will end with a discussion on how to develop the advanced characterization technology applied for OAR along with a caution of practical application for OAR.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"219 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500282","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of the new energy industry has resulted in an urgent demand for batteries with superior energy density. To this end, oxygen anionic redox (OAR) emerges as a new paradigm for significantly enhancing battery energy density, which is initially explored in diverse battery systems. Although the feasibility of OAR in various cathode materials is affirmed, it is essential to consider the inevitable consequent issues, such as the irreversibility of OAR process and potential damage to electrode structure. To achieve a comprehensive understanding and effectively leverage the potential of OAR for high‐energy‐density batteries, extensive research has focused on the performance enhancement and failure mechanisms of OAR in different battery systems. However, owing to the limitation of the characterization techniques, a systematic and comprehensive research approaches for studying OAR is lacking. Herein, combing the advanced characterization techniques, an overview is provided from local OAR to full OAR in different cathodes, in which the triggers, working processes and challenges associated with OAR are presented. This perspective will end with a discussion on how to develop the advanced characterization technology applied for OAR along with a caution of practical application for OAR.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.