{"title":"Deciphering disordered regions controlling mRNA decay in high-throughput","authors":"Joseph H. Lobel, Nicholas T. Ingolia","doi":"10.1038/s41586-025-08919-x","DOIUrl":null,"url":null,"abstract":"<p>Intrinsically disordered regions within proteins drive specific molecular functions despite lacking a defined structure<sup>1,2</sup>. Although disordered regions are integral to controlling mRNA stability and translation, the mechanisms underlying these regulatory effects remain unclear<sup>3</sup>. Here we reveal the molecular determinants of this activity using high-throughput functional profiling. Systematic mutagenesis across hundreds of regulatory disordered elements, combined with machine learning, reveals a complex pattern of molecular features important for their activity. The presence and arrangement of aromatic residues strongly predicts the ability of seemingly diverse protein sequences to influence mRNA stability and translation. We further show how many of these regulatory elements exert their effects by engaging core mRNA decay machinery. Our results define molecular features and biochemical pathways that explain how disordered regions control mRNA expression and shed light on broader principles within functional, unstructured proteins.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"31 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08919-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsically disordered regions within proteins drive specific molecular functions despite lacking a defined structure1,2. Although disordered regions are integral to controlling mRNA stability and translation, the mechanisms underlying these regulatory effects remain unclear3. Here we reveal the molecular determinants of this activity using high-throughput functional profiling. Systematic mutagenesis across hundreds of regulatory disordered elements, combined with machine learning, reveals a complex pattern of molecular features important for their activity. The presence and arrangement of aromatic residues strongly predicts the ability of seemingly diverse protein sequences to influence mRNA stability and translation. We further show how many of these regulatory elements exert their effects by engaging core mRNA decay machinery. Our results define molecular features and biochemical pathways that explain how disordered regions control mRNA expression and shed light on broader principles within functional, unstructured proteins.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.