A powerful and highly efficient PAI-mediated transgenesis approach in Drosophila

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wangfei Shi, Xuedi Zhang, Angyang Sun, Jie Zheng, Kailong Zhuang, Ziheng Chen, Ju Peng, Pengchong Fu, Guanjun Gao
{"title":"A powerful and highly efficient PAI-mediated transgenesis approach in Drosophila","authors":"Wangfei Shi, Xuedi Zhang, Angyang Sun, Jie Zheng, Kailong Zhuang, Ziheng Chen, Ju Peng, Pengchong Fu, Guanjun Gao","doi":"10.1093/nar/gkaf317","DOIUrl":null,"url":null,"abstract":"We report a novel serine recombinase-mediated transgenesis approach in Drosophila melanogaster utilizing the Pseudomonasaeruginosa integrase (PAI), identified through a comprehensive bioinformatic analysis. PAI-mediated transgenesis achieves unparalleled integration efficiencies compared to the widely used PhiC31 system, with a 10-fold improvement in Drosophila S2 cells and transgenic efficiencies up to 61.9% in embryo microinjections, while exhibiting exceptional performance in integrating large transgenes up to 32 kb. We engineered versatile PAI-attP Drosophila lines spanning the three major chromosomes. Practical applications validate the utility and robustness of PAI-mediated transgenes. The PAI system’s substantial advantages make it an invaluable tool for advancing Drosophila genetics, empowering high-throughput studies and novel disease modeling with unprecedented efficiency.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"20 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf317","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We report a novel serine recombinase-mediated transgenesis approach in Drosophila melanogaster utilizing the Pseudomonasaeruginosa integrase (PAI), identified through a comprehensive bioinformatic analysis. PAI-mediated transgenesis achieves unparalleled integration efficiencies compared to the widely used PhiC31 system, with a 10-fold improvement in Drosophila S2 cells and transgenic efficiencies up to 61.9% in embryo microinjections, while exhibiting exceptional performance in integrating large transgenes up to 32 kb. We engineered versatile PAI-attP Drosophila lines spanning the three major chromosomes. Practical applications validate the utility and robustness of PAI-mediated transgenes. The PAI system’s substantial advantages make it an invaluable tool for advancing Drosophila genetics, empowering high-throughput studies and novel disease modeling with unprecedented efficiency.
果蝇中一种强大而高效的 PAI 介导的转基因方法
我们报道了一种新的丝氨酸重组酶介导的转基因方法,利用假单胞菌铜绿假单胞菌整合酶(PAI),通过综合生物信息学分析鉴定。与广泛使用的PhiC31系统相比,pai介导的转基因具有无与伦比的整合效率,在果蝇S2细胞中提高了10倍,在胚胎显微注射中转基因效率高达61.9%,同时在整合32 kb的大型转基因方面表现出色。我们设计了跨越三条主要染色体的多功能PAI-attP果蝇系。实际应用验证了pai介导的转基因的实用性和稳健性。PAI系统的巨大优势使其成为推进果蝇遗传学,以前所未有的效率进行高通量研究和新型疾病建模的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信