Antimicrobial Peptide Developed with Machine Learning Sequence Optimization Targets Drug Resistant Staphylococcus aureus in Mice.

Biswajit Mishra,Anindya Basu,Fadi Shehadeh,LewisOscar Felix,Sai Sundeep Kollala,Yashpal Singh Chhonker,Mandar T Naik,Charilaos Dellis,Liyang Zhang,Narchonai Ganesan,Daryl J Murry,Jianhua Gu,Michael B Sherman,Frederick M Ausubel,Paul P Sotiriadis,Eleftherios Mylonakis
{"title":"Antimicrobial Peptide Developed with Machine Learning Sequence Optimization Targets Drug Resistant Staphylococcus aureus in Mice.","authors":"Biswajit Mishra,Anindya Basu,Fadi Shehadeh,LewisOscar Felix,Sai Sundeep Kollala,Yashpal Singh Chhonker,Mandar T Naik,Charilaos Dellis,Liyang Zhang,Narchonai Ganesan,Daryl J Murry,Jianhua Gu,Michael B Sherman,Frederick M Ausubel,Paul P Sotiriadis,Eleftherios Mylonakis","doi":"10.1172/jci185430","DOIUrl":null,"url":null,"abstract":"As antimicrobial resistance rises, new antibacterial candidates are urgently needed. Using sequence space information from over 14,743 functional antimicrobial peptides (AMPs), we improved the antimicrobial properties of citropin 1.1, an AMP with weak anti-methicillin resistant Staphylococcus aureus (MRSA) activity, producing a short and potent anti-staphylococcal peptide, CIT-8 (13 residues). At 40 μg/ml, CIT-8 eradicated 1 × 108 drug-resistant MRSA and VRSA (vancomycin resistant S. aureus) persister cells within 30 mins of exposure and reduced the number of viable biofilm cells of MRSA and VRSA by 3 log10 and 4 log10 in established biofilms, respectively. CIT-8 (at 32 μg/ml) depolarized and permeated the S. aureus MW2 membrane. In a mouse model of MRSA skin infection, CIT-8 (2% w/w in petroleum jelly) significantly reduced the bacterial burden by 2.3 log10 (p < 0.0001). Our methodology accelerates AMP design by combining traditional peptide design strategies, such as truncation, substitution, and structure-guided alteration, with machine learning (ML)-backed sequence optimization.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"172 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci185430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As antimicrobial resistance rises, new antibacterial candidates are urgently needed. Using sequence space information from over 14,743 functional antimicrobial peptides (AMPs), we improved the antimicrobial properties of citropin 1.1, an AMP with weak anti-methicillin resistant Staphylococcus aureus (MRSA) activity, producing a short and potent anti-staphylococcal peptide, CIT-8 (13 residues). At 40 μg/ml, CIT-8 eradicated 1 × 108 drug-resistant MRSA and VRSA (vancomycin resistant S. aureus) persister cells within 30 mins of exposure and reduced the number of viable biofilm cells of MRSA and VRSA by 3 log10 and 4 log10 in established biofilms, respectively. CIT-8 (at 32 μg/ml) depolarized and permeated the S. aureus MW2 membrane. In a mouse model of MRSA skin infection, CIT-8 (2% w/w in petroleum jelly) significantly reduced the bacterial burden by 2.3 log10 (p < 0.0001). Our methodology accelerates AMP design by combining traditional peptide design strategies, such as truncation, substitution, and structure-guided alteration, with machine learning (ML)-backed sequence optimization.
利用机器学习序列优化开发的抗菌肽靶向小鼠耐药金黄色葡萄球菌。
随着抗菌素耐药性的上升,迫切需要新的候选抗菌素。利用14,743种功能性抗菌肽(AMP)的序列空间信息,我们改进了具有弱抗甲氧西林耐药金黄色葡萄球菌(MRSA)活性的AMP citropin 1.1的抗菌性能,生成了短而有效的抗葡萄球菌肽CIT-8(13个残基)。在40 μg/ml浓度下,cat -8在暴露30min内根除1 × 108个耐药MRSA和VRSA(万古霉素耐药金黄色葡萄球菌)持久性细胞,并使已建立生物膜中MRSA和VRSA的活生物膜细胞数量分别减少3 log10和4 log10。CIT-8 (32 μg/ml)去极化并渗透金黄色葡萄球菌MW2膜。在MRSA皮肤感染小鼠模型中,CIT-8(凡士林中2% w/w)显著减少细菌负荷2.3 log10 (p < 0.0001)。我们的方法通过将传统的肽设计策略(如截断、替代和结构引导改变)与机器学习(ML)支持的序列优化相结合来加速AMP的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信