{"title":"Thermonuclear diversity and the Hubble tension","authors":"Richard S. Miller","doi":"10.1103/physrevd.111.l081305","DOIUrl":null,"url":null,"abstract":"Homogeneity is the hallmark of standard candle-based cosmology investigations. Thermonuclear supernovae (Type-Ia, SNeIa) violate this essential requirement if they develop along multiple evolutionary pathways. In this work, the impact of thermonuclear diversity on cosmological parameter constraints is quantified using Pantheon+, one of the largest ensembles of SNeIa compiled to probe cosmology to date. Evidence of diversity is encoded in supernova light curves. Pantheon+ is shown to be diverse, with features indicative of multiple thermonuclear subclasses. Diversity driven systematic effects have been quantified on a supernova-by-supernova basis; event selections based on light curve derived metrics were subsequently used to characterize diversity dependent trends and limit their impact. A diversity mitigated estimate of the Hubble-Lemaître parameter, H</a:mi>0</a:mn></a:msub>=</a:mo>67.9</a:mn>±</a:mo>0.8</a:mn></a:mtext></a:mtext>km</a:mi></a:mtext>s</a:mi>−</a:mo>1</a:mn></a:mrow></a:msup></a:mtext>Mpc</a:mi></a:mrow>−</a:mo>1</a:mn></a:mrow></a:msup></a:mrow></a:mrow></a:math> (68% C.L.), was obtained by reanalyzing Pantheon+. The Hubble tension, an apparent disparity between early and late Universe determinations of <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msub><d:mi>H</d:mi><d:mn>0</d:mn></d:msub></d:math>, is eased from <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mo>∼</f:mo><f:mn>5</f:mn><f:mi>σ</f:mi></f:math> to <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mo><</h:mo><h:mn>1</h:mn><h:mi>σ</h:mi></h:math> after accounting for the diverse thermonuclear scenarios that govern SNeIa. Diversity mitigated subsets of Pantheon+ also show a <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mo>∼</j:mo><j:mrow><j:mn>3.4</j:mn><j:mi>σ</j:mi></j:mrow></j:math> preference for a flat <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msub><l:mi>w</l:mi><l:mn>0</l:mn></l:msub><l:msub><l:mi>w</l:mi><l:mi>a</l:mi></l:msub><l:mi>CDM</l:mi></l:math> cosmology with dark energy equation of state parameters <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mrow><n:mo stretchy=\"false\">(</n:mo><n:msub><n:mi>w</n:mi><n:mn>0</n:mn></n:msub><n:mo>,</n:mo><n:msub><n:mi>w</n:mi><n:mi>a</n:mi></n:msub><n:mo stretchy=\"false\">)</n:mo><n:mo>=</n:mo><n:mo stretchy=\"false\">(</n:mo><n:mo>−</n:mo><n:mn>1.084</n:mn><n:mo>±</n:mo><n:mn>0.180</n:mn><n:mo>,</n:mo><n:mo>−</n:mo><n:mn>2.066</n:mn><n:mo>±</n:mo><n:mn>0.675</n:mn><n:mo stretchy=\"false\">)</n:mo></n:mrow></n:math>. A strategy for precise SNeIa-derived cosmological inferences, dominated by statistical rather than systematic uncertainties, is also presented. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"5 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l081305","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Homogeneity is the hallmark of standard candle-based cosmology investigations. Thermonuclear supernovae (Type-Ia, SNeIa) violate this essential requirement if they develop along multiple evolutionary pathways. In this work, the impact of thermonuclear diversity on cosmological parameter constraints is quantified using Pantheon+, one of the largest ensembles of SNeIa compiled to probe cosmology to date. Evidence of diversity is encoded in supernova light curves. Pantheon+ is shown to be diverse, with features indicative of multiple thermonuclear subclasses. Diversity driven systematic effects have been quantified on a supernova-by-supernova basis; event selections based on light curve derived metrics were subsequently used to characterize diversity dependent trends and limit their impact. A diversity mitigated estimate of the Hubble-Lemaître parameter, H0=67.9±0.8kms−1Mpc−1 (68% C.L.), was obtained by reanalyzing Pantheon+. The Hubble tension, an apparent disparity between early and late Universe determinations of H0, is eased from ∼5σ to <1σ after accounting for the diverse thermonuclear scenarios that govern SNeIa. Diversity mitigated subsets of Pantheon+ also show a ∼3.4σ preference for a flat w0waCDM cosmology with dark energy equation of state parameters (w0,wa)=(−1.084±0.180,−2.066±0.675). A strategy for precise SNeIa-derived cosmological inferences, dominated by statistical rather than systematic uncertainties, is also presented. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.