Dunzhu Li, Peijing Li, Yunhong Shi, Emmet D. Sheerin, Zihan Zhang, Luming Yang, Liwen Xiao, Christopher Hill, Conall Gordon, Manuel Ruether, Joshua Pepper, John E. Sader, Michael A. Morris, Jing Jing Wang, John J. Boland
{"title":"Stress-induced phase separation in plastics drives the release of amorphous polymer micropollutants into water","authors":"Dunzhu Li, Peijing Li, Yunhong Shi, Emmet D. Sheerin, Zihan Zhang, Luming Yang, Liwen Xiao, Christopher Hill, Conall Gordon, Manuel Ruether, Joshua Pepper, John E. Sader, Michael A. Morris, Jing Jing Wang, John J. Boland","doi":"10.1038/s41467-025-58898-w","DOIUrl":null,"url":null,"abstract":"<p>Residual stress is an intrinsic property of semicrystalline plastics such as polypropylene and polyethylene. However, there is no fundamental understanding of the role intrinsic residual stress plays in the generation of plastic pollutants that threaten the environment and human health. Here, we show that the processing-induced compressive residual stress typically found in polypropylene and polyethylene plastics forces internal nano and microscale segregation of low molecular weight (MW) amorphous polymer droplets onto the plastic’s surface. Squeeze flow simulations reveal this stress-driven volumetric flow is consistent with that of a Bingham plastic material, with a temperature-dependent threshold yield stress. We confirm that flow is thermally activated and stress dependent, with a reduced energy barrier at higher compressive stresses. Transfer of surface segregated droplets into water generates amorphous polymer micropollutants (APMPs) that are denatured, with structure and composition different from that of traditional polycrystalline microplastics. Studies with water-containing plastic bottles show that the highly compressed bottle neck and mouth regions are predominantly responsible for the release of APMPs. Our findings reveal a stress-induced mechanism of plastic degradation and underscore the need to modify current plastic processing technologies to reduce residual stress levels and suppress phase separation of low MW APMPs in plastics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58898-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Residual stress is an intrinsic property of semicrystalline plastics such as polypropylene and polyethylene. However, there is no fundamental understanding of the role intrinsic residual stress plays in the generation of plastic pollutants that threaten the environment and human health. Here, we show that the processing-induced compressive residual stress typically found in polypropylene and polyethylene plastics forces internal nano and microscale segregation of low molecular weight (MW) amorphous polymer droplets onto the plastic’s surface. Squeeze flow simulations reveal this stress-driven volumetric flow is consistent with that of a Bingham plastic material, with a temperature-dependent threshold yield stress. We confirm that flow is thermally activated and stress dependent, with a reduced energy barrier at higher compressive stresses. Transfer of surface segregated droplets into water generates amorphous polymer micropollutants (APMPs) that are denatured, with structure and composition different from that of traditional polycrystalline microplastics. Studies with water-containing plastic bottles show that the highly compressed bottle neck and mouth regions are predominantly responsible for the release of APMPs. Our findings reveal a stress-induced mechanism of plastic degradation and underscore the need to modify current plastic processing technologies to reduce residual stress levels and suppress phase separation of low MW APMPs in plastics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.