{"title":"Predicting grain boundary segregation in magnesium alloys: An atomistically informed machine learning approach","authors":"Zhuocheng Xie, Achraf Atila, Julien Guénolé, Sandra Korte-Kerzel, Talal Al-Samman, Ulrich Kerzel","doi":"10.1016/j.jma.2025.03.021","DOIUrl":null,"url":null,"abstract":"Grain boundary (GB) segregation substantially influences the mechanical properties and performance of magnesium (Mg). Atomic-scale modeling, typically using ab-initio or semi-empirical approaches, has mainly focused on GB segregation at highly symmetric GBs in Mg alloys, often failing to capture the diversity of local atomic environments and segregation energies, resulting in inaccurate structure-property predictions. This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures. The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors. We found that segregation energy and vibrational free energy follow skew-normal distributions, with hydrostatic stress, an indicator of excess free volume, emerging as an important factor influencing segregation tendency. The local atomic environment’s flexibility, quantified by flexibility volume, is also crucial in predicting GB segregation. Comparing the grain boundary solute concentrations calculated via the Langmuir-McLean isotherm with experimental data, we identified a pronounced segregation tendency for Nd, highlighting its potential for GB engineering in Mg alloys. This work demonstrates the powerful synergy of atomistic simulations and machine learning, paving the way for designing advanced lightweight Mg alloys with tailored properties.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"4 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.03.021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Grain boundary (GB) segregation substantially influences the mechanical properties and performance of magnesium (Mg). Atomic-scale modeling, typically using ab-initio or semi-empirical approaches, has mainly focused on GB segregation at highly symmetric GBs in Mg alloys, often failing to capture the diversity of local atomic environments and segregation energies, resulting in inaccurate structure-property predictions. This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures. The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors. We found that segregation energy and vibrational free energy follow skew-normal distributions, with hydrostatic stress, an indicator of excess free volume, emerging as an important factor influencing segregation tendency. The local atomic environment’s flexibility, quantified by flexibility volume, is also crucial in predicting GB segregation. Comparing the grain boundary solute concentrations calculated via the Langmuir-McLean isotherm with experimental data, we identified a pronounced segregation tendency for Nd, highlighting its potential for GB engineering in Mg alloys. This work demonstrates the powerful synergy of atomistic simulations and machine learning, paving the way for designing advanced lightweight Mg alloys with tailored properties.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.