Experimental determination of giant polarization in wurtzite III-nitride semiconductors

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Haotian Ye, Ping Wang, Rui Wang, Jinlin Wang, Xifan Xu, Ran Feng, Tao Wang, Wen-Yi Tong, Fang Liu, Bowen Sheng, Wenjie Ma, Bingxuan An, Hongjian Li, Zhaoying Chen, Chun-Gang Duan, Weikun Ge, Bo Shen, Xinqiang Wang
{"title":"Experimental determination of giant polarization in wurtzite III-nitride semiconductors","authors":"Haotian Ye, Ping Wang, Rui Wang, Jinlin Wang, Xifan Xu, Ran Feng, Tao Wang, Wen-Yi Tong, Fang Liu, Bowen Sheng, Wenjie Ma, Bingxuan An, Hongjian Li, Zhaoying Chen, Chun-Gang Duan, Weikun Ge, Bo Shen, Xinqiang Wang","doi":"10.1038/s41467-025-58975-0","DOIUrl":null,"url":null,"abstract":"<p>Polarization engineering has revolutionized the photonic and electronic landscape of III-nitride semiconductors over the past decades. However, recent revelations of giant ferroelectric polarization in wurtzite III-nitrides challenge the long-standing paradigms. Here, we experimentally elucidate the polarization, including its magnitude and orientation, and its relationship to lattice polarity in III-nitrides. Those experimentally determined polarizations exceeding 1 C/m<sup>2</sup> with an upward orientation in metal-polar wurtzite nitride compounds align with recent theoretical predictions. To reconcile these findings, a unified polarization framework is established based on the centrosymmetric layered-hexagonal reference structure. This unified framework redefines the polarization landscape in contemporary GaN heterostructures, quantum structures, and ferroelectric heterostructures. Furthermore, we predict significant tunability and a dramatic increase in sheet carrier concentration in ferroelectric ScAlN/GaN heterostructures, heralding advancements in high-power, high-frequency, and reconfigurable transistors, and non-volatile memories. This work bridges the critical gap in the understanding of polarization in both conventional and ferroelectric wurtzite nitrides, offering fundamental insights and paving the way for next-generation photonic, electronic, and acoustic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"68 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58975-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polarization engineering has revolutionized the photonic and electronic landscape of III-nitride semiconductors over the past decades. However, recent revelations of giant ferroelectric polarization in wurtzite III-nitrides challenge the long-standing paradigms. Here, we experimentally elucidate the polarization, including its magnitude and orientation, and its relationship to lattice polarity in III-nitrides. Those experimentally determined polarizations exceeding 1 C/m2 with an upward orientation in metal-polar wurtzite nitride compounds align with recent theoretical predictions. To reconcile these findings, a unified polarization framework is established based on the centrosymmetric layered-hexagonal reference structure. This unified framework redefines the polarization landscape in contemporary GaN heterostructures, quantum structures, and ferroelectric heterostructures. Furthermore, we predict significant tunability and a dramatic increase in sheet carrier concentration in ferroelectric ScAlN/GaN heterostructures, heralding advancements in high-power, high-frequency, and reconfigurable transistors, and non-volatile memories. This work bridges the critical gap in the understanding of polarization in both conventional and ferroelectric wurtzite nitrides, offering fundamental insights and paving the way for next-generation photonic, electronic, and acoustic devices.

Abstract Image

氮化纤锌矿iii型半导体巨极化的实验测定
过去几十年来,极化工程彻底改变了 III 族氮化物半导体的光子和电子领域。然而,最近揭示的晶格三氮化物中的巨型铁电极化现象对长期以来的范式提出了挑战。在此,我们通过实验阐明了 III 族氮化物中的极化,包括其幅度和取向,及其与晶格极性的关系。在金属极性的乌兹氮化物中,实验测定的极化超过 1 C/m2,且方向向上,这与最近的理论预测一致。为了调和这些发现,我们在中心对称层状六方参考结构的基础上建立了一个统一的极化框架。这一统一框架重新定义了当代氮化镓异质结构、量子结构和铁电异质结构的极化状况。此外,我们还预测了铁电 ScAlN/GaN 异质结构的可调谐性和片状载流子浓度的显著提高,预示着大功率、高频、可重构晶体管和非易失性存储器的进步。这项研究填补了人们对传统氮化物和铁电晶格氮化物中极化现象认识的重要空白,为下一代光子、电子和声学设备提供了基础性见解并铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信