{"title":"Ensemble Adaptive Sampling Scheme: Identifying an Optimal Sampling Strategy via Policy Ranking.","authors":"Hassan Nadeem,Diwakar Shukla","doi":"10.1021/acs.jctc.4c01488","DOIUrl":null,"url":null,"abstract":"Efficient sampling in biomolecular simulations is critical for accurately capturing the complex dynamic behaviors of biological systems. Adaptive sampling techniques aim to improve efficiency by focusing computational resources on the most relevant regions of the phase space. In this work, we present a framework for identifying the optimal sampling policy through metric-driven ranking. Our approach systematically evaluates the policy ensemble and ranks the policies based on their ability to explore the conformational space effectively. Through a series of biomolecular simulation case studies, we demonstrate that the choice of a different adaptive sampling policy at each round significantly outperforms single policy sampling, leading to faster convergence and improved sampling performance. This approach takes an ensemble of adaptive sampling policies and identifies the optimal policy for the next round based on current data. Beyond presenting this ensemble view of adaptive sampling, we also propose two sampling algorithms that approximate this ranking framework on the fly. The modularity of this framework allows incorporation of any adaptive sampling policy, making it versatile and suitable as a comprehensive adaptive sampling scheme.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"5 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient sampling in biomolecular simulations is critical for accurately capturing the complex dynamic behaviors of biological systems. Adaptive sampling techniques aim to improve efficiency by focusing computational resources on the most relevant regions of the phase space. In this work, we present a framework for identifying the optimal sampling policy through metric-driven ranking. Our approach systematically evaluates the policy ensemble and ranks the policies based on their ability to explore the conformational space effectively. Through a series of biomolecular simulation case studies, we demonstrate that the choice of a different adaptive sampling policy at each round significantly outperforms single policy sampling, leading to faster convergence and improved sampling performance. This approach takes an ensemble of adaptive sampling policies and identifies the optimal policy for the next round based on current data. Beyond presenting this ensemble view of adaptive sampling, we also propose two sampling algorithms that approximate this ranking framework on the fly. The modularity of this framework allows incorporation of any adaptive sampling policy, making it versatile and suitable as a comprehensive adaptive sampling scheme.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.