Aerial additive manufacturing: Toward on-site building construction with aerial robots

IF 26.1 1区 计算机科学 Q1 ROBOTICS
Yusuf Furkan Kaya, Lachlan Orr, Basaran Bahadir Kocer, Vijay Pawar, Robert Stuart-Smith, Mirko Kovač
{"title":"Aerial additive manufacturing: Toward on-site building construction with aerial robots","authors":"Yusuf Furkan Kaya,&nbsp;Lachlan Orr,&nbsp;Basaran Bahadir Kocer,&nbsp;Vijay Pawar,&nbsp;Robert Stuart-Smith,&nbsp;Mirko Kovač","doi":"10.1126/scirobotics.ado6251","DOIUrl":null,"url":null,"abstract":"<div >Recent advancements in large-scale additive manufacturing have extended its application in the building industry, delivering notable gains in productivity, efficiency, environmental sustainability, and safety compared with traditional construction methods. Aerial additive manufacturing (aerial AM), which uses aerial robots for unbounded construction tasks, offers distinct advantages, such as scalability at height, enhanced access to remote or challenging locations, and rapid on-demand repair capabilities. Despite several small-scale demonstrations, deploying aerial robots in construction still presents critical challenges and unresolved scientific questions. This Review provides a comprehensive analysis of current aerial AM research, highlights key opportunities and challenges at large scales, and introduces an autonomy framework aimed at clarifying the overarching challenges inherent in the technology.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 101","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.ado6251","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in large-scale additive manufacturing have extended its application in the building industry, delivering notable gains in productivity, efficiency, environmental sustainability, and safety compared with traditional construction methods. Aerial additive manufacturing (aerial AM), which uses aerial robots for unbounded construction tasks, offers distinct advantages, such as scalability at height, enhanced access to remote or challenging locations, and rapid on-demand repair capabilities. Despite several small-scale demonstrations, deploying aerial robots in construction still presents critical challenges and unresolved scientific questions. This Review provides a comprehensive analysis of current aerial AM research, highlights key opportunities and challenges at large scales, and introduces an autonomy framework aimed at clarifying the overarching challenges inherent in the technology.
空中增材制造:面向空中机器人现场建筑施工
最近大规模增材制造的进步已经扩展了它在建筑行业的应用,与传统的建筑方法相比,在生产率、效率、环境可持续性和安全性方面取得了显著的进步。空中增材制造(Aerial AM)使用空中机器人完成无限施工任务,具有明显的优势,例如高空可扩展性,增强了对远程或具有挑战性位置的访问能力,以及快速按需维修能力。尽管有几次小规模的演示,在建筑中部署空中机器人仍然面临着严峻的挑战和未解决的科学问题。本综述对当前航空AM研究进行了全面分析,强调了大规模的关键机遇和挑战,并介绍了一个旨在阐明该技术固有的总体挑战的自主框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信