Fu Gui, Baishan Jiang, Jie Jiang, Zhixiang He, Takuya Tsujino, Tomoaki Takai, Seiji Arai, Celine Pana, Jens Köllermann, Gary Andrew Bradshaw, Robyn Eisert, Marian Kalocsay, Anne Fassl, Steven P. Balk, Adam S. Kibel, Li Jia
{"title":"Acute BRCAness induction and AR pathway blockage through CDK12/7/9 degradation enhances PARP inhibitor sensitivity in prostate cancer","authors":"Fu Gui, Baishan Jiang, Jie Jiang, Zhixiang He, Takuya Tsujino, Tomoaki Takai, Seiji Arai, Celine Pana, Jens Köllermann, Gary Andrew Bradshaw, Robyn Eisert, Marian Kalocsay, Anne Fassl, Steven P. Balk, Adam S. Kibel, Li Jia","doi":"10.1126/sciadv.adu0847","DOIUrl":null,"url":null,"abstract":"<div >Current treatments for advanced prostate cancer (PCa) primarily target the androgen receptor (AR) pathway. However, the emergence of castration-resistant prostate cancer (CRPC) and resistance to AR pathway inhibitors (APPIs) remains ongoing challenges. Here, we present BSJ-5-63, a proteolysis-targeting chimera (PROTAC) targeting cyclin-dependent kinases (CDKs) CDK12, CDK7, and CDK9, offering a multipronged approach to CRPC therapy. BSJ-5-63 degrades CDK12, diminishing BRCA1 and BRCA2 expression and inducing a sustained “BRCAness” state. This sensitizes cancer cells to PARP inhibitors (PARPis) regardless of their homologous recombination repair (HRR) status. Furthermore, CDK7 and CDK9 degradation attenuates AR signaling, enhancing its therapeutic efficacy. Preclinical studies, including both in vitro and in vivo CRPC models, demonstrate that BSJ-5-63 exerts potent antitumor activity in both AR-positive and AR-negative setting. This study introduces BSJ-5-63 as a promising therapeutic agent that addresses both DNA repair and AR signaling mechanisms, with potential benefits for a board patient population.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu0847","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu0847","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Current treatments for advanced prostate cancer (PCa) primarily target the androgen receptor (AR) pathway. However, the emergence of castration-resistant prostate cancer (CRPC) and resistance to AR pathway inhibitors (APPIs) remains ongoing challenges. Here, we present BSJ-5-63, a proteolysis-targeting chimera (PROTAC) targeting cyclin-dependent kinases (CDKs) CDK12, CDK7, and CDK9, offering a multipronged approach to CRPC therapy. BSJ-5-63 degrades CDK12, diminishing BRCA1 and BRCA2 expression and inducing a sustained “BRCAness” state. This sensitizes cancer cells to PARP inhibitors (PARPis) regardless of their homologous recombination repair (HRR) status. Furthermore, CDK7 and CDK9 degradation attenuates AR signaling, enhancing its therapeutic efficacy. Preclinical studies, including both in vitro and in vivo CRPC models, demonstrate that BSJ-5-63 exerts potent antitumor activity in both AR-positive and AR-negative setting. This study introduces BSJ-5-63 as a promising therapeutic agent that addresses both DNA repair and AR signaling mechanisms, with potential benefits for a board patient population.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.