Gangqiang Yuan, Xiaoxi Luo, Kui He, Yue Tan, Caiming Luo, Ben Liu, Yidan Sun, Jinbin Liu
{"title":"Intratumoral self-assembly of renal-clearable gold nanoparticles as precise photothermal nanomedicine for liver tumor therapy","authors":"Gangqiang Yuan, Xiaoxi Luo, Kui He, Yue Tan, Caiming Luo, Ben Liu, Yidan Sun, Jinbin Liu","doi":"10.1126/sciadv.adw7032","DOIUrl":null,"url":null,"abstract":"<div >Noninvasive photothermal therapy (PTT) for cancer with photothermal agents (PTAs) has recently achieved success in both preclinical and clinical trials. However, traditional PTAs tend to nonspecifically accumulate in normal liver tissue, hampering their use in PTT of liver tumors. By taking advantage of extremely low liver accumulation from ultrasmall renal-clearable gold nanoparticles (AuNPs), we report a biosafe therapeutic PTT strategy to treat liver tumors precisely through the intratumoral self-assembly of renal-clearable AuNPs at the tumor site via host-guest interactions. After active tumor targeting from the host AuNPs functionalized with both cyclo (Arg-Gly-Asp-<span>d</span>-Phe-Cys) and cyclodextrin, the guest AuNPs functionalized with both pH-responsive doxorubicin and adamantane are designed to precisely trigger intratumoral self-assembly, enhancing both PTT and chemotherapy toward the liver tumor microenvironment. This smart design principle generates a precise therapeutic action toward liver tumors without causing any noticeable heating effect or damage to the surrounding normal liver tissue.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw7032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw7032","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Noninvasive photothermal therapy (PTT) for cancer with photothermal agents (PTAs) has recently achieved success in both preclinical and clinical trials. However, traditional PTAs tend to nonspecifically accumulate in normal liver tissue, hampering their use in PTT of liver tumors. By taking advantage of extremely low liver accumulation from ultrasmall renal-clearable gold nanoparticles (AuNPs), we report a biosafe therapeutic PTT strategy to treat liver tumors precisely through the intratumoral self-assembly of renal-clearable AuNPs at the tumor site via host-guest interactions. After active tumor targeting from the host AuNPs functionalized with both cyclo (Arg-Gly-Asp-d-Phe-Cys) and cyclodextrin, the guest AuNPs functionalized with both pH-responsive doxorubicin and adamantane are designed to precisely trigger intratumoral self-assembly, enhancing both PTT and chemotherapy toward the liver tumor microenvironment. This smart design principle generates a precise therapeutic action toward liver tumors without causing any noticeable heating effect or damage to the surrounding normal liver tissue.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.