Simone Betteti, Giacomo Baggio, Francesco Bullo, Sandro Zampieri
{"title":"Input-driven dynamics for robust memory retrieval in Hopfield networks","authors":"Simone Betteti, Giacomo Baggio, Francesco Bullo, Sandro Zampieri","doi":"10.1126/sciadv.adu6991","DOIUrl":null,"url":null,"abstract":"<div >The Hopfield model provides a mathematical framework for understanding the mechanisms of memory storage and retrieval in the human brain. This model has inspired decades of research on learning and retrieval dynamics, capacity estimates, and sequential transitions among memories. Notably, the role of external inputs has been largely underexplored, from their effects on neural dynamics to how they facilitate effective memory retrieval. To bridge this gap, we propose a dynamical system framework in which the external input directly influences the neural synapses and shapes the energy landscape of the Hopfield model. This plasticity-based mechanism provides a clear energetic interpretation of the memory retrieval process and proves effective at correctly classifying mixed inputs. Furthermore, we integrate this model within the framework of modern Hopfield architectures to elucidate how current and past information are combined during the retrieval process. Last, we embed both the classic and the proposed model in an environment disrupted by noise and compare their robustness during memory retrieval.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu6991","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu6991","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Hopfield model provides a mathematical framework for understanding the mechanisms of memory storage and retrieval in the human brain. This model has inspired decades of research on learning and retrieval dynamics, capacity estimates, and sequential transitions among memories. Notably, the role of external inputs has been largely underexplored, from their effects on neural dynamics to how they facilitate effective memory retrieval. To bridge this gap, we propose a dynamical system framework in which the external input directly influences the neural synapses and shapes the energy landscape of the Hopfield model. This plasticity-based mechanism provides a clear energetic interpretation of the memory retrieval process and proves effective at correctly classifying mixed inputs. Furthermore, we integrate this model within the framework of modern Hopfield architectures to elucidate how current and past information are combined during the retrieval process. Last, we embed both the classic and the proposed model in an environment disrupted by noise and compare their robustness during memory retrieval.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.