Biomimetic rigid-soft finger design for highly dexterous and adaptive robotic hands

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ningbin Zhang, Peiwei Zhou, Xinyu Yang, Fengjie Shen, Jieji Ren, Tengyu Hou, Le Dong, Rong Bian, Dong Wang, Guoying Gu, Xiangyang Zhu
{"title":"Biomimetic rigid-soft finger design for highly dexterous and adaptive robotic hands","authors":"Ningbin Zhang,&nbsp;Peiwei Zhou,&nbsp;Xinyu Yang,&nbsp;Fengjie Shen,&nbsp;Jieji Ren,&nbsp;Tengyu Hou,&nbsp;Le Dong,&nbsp;Rong Bian,&nbsp;Dong Wang,&nbsp;Guoying Gu,&nbsp;Xiangyang Zhu","doi":"10.1126/sciadv.adu2018","DOIUrl":null,"url":null,"abstract":"<div >In dexterous robotic hand design, achieving high mobility and adaptability comparable to human hands remains an ongoing challenge. Biomimetic designs mimicking the musculoskeletal structure have shown promise yet face difficulties in preserving key kinematic and mechanical principles while reducing system complexity. Here, we present a biomimetic finger design that preserves these principles through coordinated rigid-soft interplay, achieving structural and control simplicity for constructing dexterous robotic hands. Our design distills complex anatomical structures into skeletal mechanisms with regular geometrics, strategically deployed soft ligaments, and elastic tendon actuation, enabling controllable multi–degree-of-freedom dexterity while providing resilience and compliance. We establish mathematical models to analyze finger kinematics, rigid-soft interplay principles, and controllable actuation. Building on these models, we integrate biomimetic fingers with a thumb to develop an anthropomorphic robotic hand. Our robotic hand experimentally demonstrates remarkable dexterity and versatility across various tasks, including piano playing, power and pinch grasping, and in-hand manipulation, confirming the design effectiveness.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu2018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu2018","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In dexterous robotic hand design, achieving high mobility and adaptability comparable to human hands remains an ongoing challenge. Biomimetic designs mimicking the musculoskeletal structure have shown promise yet face difficulties in preserving key kinematic and mechanical principles while reducing system complexity. Here, we present a biomimetic finger design that preserves these principles through coordinated rigid-soft interplay, achieving structural and control simplicity for constructing dexterous robotic hands. Our design distills complex anatomical structures into skeletal mechanisms with regular geometrics, strategically deployed soft ligaments, and elastic tendon actuation, enabling controllable multi–degree-of-freedom dexterity while providing resilience and compliance. We establish mathematical models to analyze finger kinematics, rigid-soft interplay principles, and controllable actuation. Building on these models, we integrate biomimetic fingers with a thumb to develop an anthropomorphic robotic hand. Our robotic hand experimentally demonstrates remarkable dexterity and versatility across various tasks, including piano playing, power and pinch grasping, and in-hand manipulation, confirming the design effectiveness.

Abstract Image

用于高度灵巧和自适应机械手的仿生刚柔手指设计
在灵巧机械手的设计中,如何实现与人的手相媲美的高机动性和适应性一直是一个挑战。模仿肌肉骨骼结构的仿生设计已经显示出希望,但在保留关键的运动学和力学原理同时降低系统复杂性方面面临困难。在这里,我们提出了一种仿生手指设计,通过协调的刚软相互作用来保留这些原则,实现了构造灵巧机械手的结构和控制简单性。我们的设计将复杂的解剖结构提炼成具有规则几何形状的骨骼机制,战略性地部署软韧带和弹性肌腱驱动,在提供弹性和顺应性的同时实现可控的多自由度灵活性。我们建立了数学模型来分析手指的运动学、刚软相互作用原理和可控驱动。在这些模型的基础上,我们将仿生手指与拇指结合起来,开发出拟人化的机器人手。实验表明,我们的机器人手在各种任务中表现出了卓越的灵活性和多功能性,包括弹钢琴、握力和捏握以及手持操作,证实了设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信