Mirko Pittaluga, Yuen San Lo, Adam Brzosko, Robert I. Woodward, Davide Scalcon, Matthew S. Winnel, Thomas Roger, James F. Dynes, Kim A. Owen, Sergio Juárez, Piotr Rydlichowski, Domenico Vicinanza, Guy Roberts, Andrew J. Shields
{"title":"Long-distance coherent quantum communications in deployed telecom networks","authors":"Mirko Pittaluga, Yuen San Lo, Adam Brzosko, Robert I. Woodward, Davide Scalcon, Matthew S. Winnel, Thomas Roger, James F. Dynes, Kim A. Owen, Sergio Juárez, Piotr Rydlichowski, Domenico Vicinanza, Guy Roberts, Andrew J. Shields","doi":"10.1038/s41586-025-08801-w","DOIUrl":null,"url":null,"abstract":"Recent advances in quantum communications have underscored the crucial role of optical coherence in developing quantum networks. This resource, which is fundamental to the phase-based architecture of the quantum internet1, has enabled the only successful demonstrations of multi-node quantum networks2–4 and substantially extended the range of quantum key distribution (QKD)5. However, the scalability of coherence-based quantum protocols remains uncertain owing to the specialized hardware required, such as ultra-stable optical cavities and cryogenic photon detectors. Here we implement the coherence-based twin-field QKD protocol over a 254-kilometre commercial telecom network spanning between Frankfurt and Kehl, Germany, achieving encryption key distribution at 110 bits per second. Our results are enabled by a scalable approach to optical coherence distribution, supported by a practical system architecture and non-cryogenic single-photon detection aided by off-band phase stabilization. Our results demonstrate repeater-like quantum communication in an operational network setting, doubling the distance for practical real-world QKD implementations without cryogenic cooling. In addition, to our knowledge, we realized one of the largest QKD networks featuring measurement-device-independent properties6. Our research aligns the requirements of coherence-based quantum communication with the capabilities of existing telecommunication infrastructure, which is likely to be useful to the future of high-performance quantum networks, including the implementation of advanced quantum communication protocols, quantum repeaters, quantum sensing networks and distributed quantum computing7. A twin-field quantum key distribution protocol based on optical coherence is deployed over a 254-kilometre commercial telecom network, demonstrating that coherence-based quantum communication can be aligned with existing telecommunication infrastructure.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"640 8060","pages":"911-917"},"PeriodicalIF":50.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08801-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in quantum communications have underscored the crucial role of optical coherence in developing quantum networks. This resource, which is fundamental to the phase-based architecture of the quantum internet1, has enabled the only successful demonstrations of multi-node quantum networks2–4 and substantially extended the range of quantum key distribution (QKD)5. However, the scalability of coherence-based quantum protocols remains uncertain owing to the specialized hardware required, such as ultra-stable optical cavities and cryogenic photon detectors. Here we implement the coherence-based twin-field QKD protocol over a 254-kilometre commercial telecom network spanning between Frankfurt and Kehl, Germany, achieving encryption key distribution at 110 bits per second. Our results are enabled by a scalable approach to optical coherence distribution, supported by a practical system architecture and non-cryogenic single-photon detection aided by off-band phase stabilization. Our results demonstrate repeater-like quantum communication in an operational network setting, doubling the distance for practical real-world QKD implementations without cryogenic cooling. In addition, to our knowledge, we realized one of the largest QKD networks featuring measurement-device-independent properties6. Our research aligns the requirements of coherence-based quantum communication with the capabilities of existing telecommunication infrastructure, which is likely to be useful to the future of high-performance quantum networks, including the implementation of advanced quantum communication protocols, quantum repeaters, quantum sensing networks and distributed quantum computing7. A twin-field quantum key distribution protocol based on optical coherence is deployed over a 254-kilometre commercial telecom network, demonstrating that coherence-based quantum communication can be aligned with existing telecommunication infrastructure.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.