Hypoxia-Driven Neurovascular Impairment Underlies Structural-Functional Dissociation in Diabetic Sudomotor Dysfunction

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
MedComm Pub Date : 2025-04-24 DOI:10.1002/mco2.70173
Xu Guo, Chao Zhang, Yuzhen Wang, Zhao Li, Yaxin Tan, Dongzhen Zhu, Wei Song, Yi Kong, Jinpeng Du, Yuyan Huang, Liting Liang, Jianjun Li, Mengde Zhang, Linhao Hou, Qinhua Liu, Feng Tian, Bingyang Yu, Yue Kong, Zhenyu Zhou, Xiaobing Fu, Sha Huang
{"title":"Hypoxia-Driven Neurovascular Impairment Underlies Structural-Functional Dissociation in Diabetic Sudomotor Dysfunction","authors":"Xu Guo,&nbsp;Chao Zhang,&nbsp;Yuzhen Wang,&nbsp;Zhao Li,&nbsp;Yaxin Tan,&nbsp;Dongzhen Zhu,&nbsp;Wei Song,&nbsp;Yi Kong,&nbsp;Jinpeng Du,&nbsp;Yuyan Huang,&nbsp;Liting Liang,&nbsp;Jianjun Li,&nbsp;Mengde Zhang,&nbsp;Linhao Hou,&nbsp;Qinhua Liu,&nbsp;Feng Tian,&nbsp;Bingyang Yu,&nbsp;Yue Kong,&nbsp;Zhenyu Zhou,&nbsp;Xiaobing Fu,&nbsp;Sha Huang","doi":"10.1002/mco2.70173","DOIUrl":null,"url":null,"abstract":"<p>Sudomotor dysfunction in diabetic patients increases the risk of fissures, infections, and diabetic foot ulcers (DFUs), thereby reducing the quality of life. Despite its clinical importance, the mechanisms underlying this dysfunction remain inadequately elucidated. This study addresses this gap by demonstrating that despite structural integrity, sweat glands (SGs) in diabetic individuals with DFUs, and a murine model of diabetic neuropathy (DN), exhibit functional impairments, as confirmed by histological and functional assays. Integrated transcriptome and proteome analysis revealed significant upregulation of the SG microenvironment in response to hypoxia, highlighting potential underlying pathways involved. In addition, histological staining and tissue clearing techniques provided evidence of impaired neurovascular networks adjacent to SGs. Single-cell RNA sequencing unveiled intricate intercellular communication networks among endothelial cells (ECs), neural cells (NCs), and sweat gland cells (SGCs), emphasizing intricate cellular interactions within the SG microenvironment. Furthermore, an in vitro SGC–NC interaction model (SNIM) was employed to validate the supportive role of NCs in regulating SGC functions, highlighting the neurovascular-SG axis in diabetic pathophysiology. These findings confirm the hypoxia-driven upregulation of the SG microenvironment and underscore the critical role of the neurovascular-SG axis in diabetic pathophysiology, providing insights into potential therapeutic targets for managing diabetic complications and improving patient outcomes.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sudomotor dysfunction in diabetic patients increases the risk of fissures, infections, and diabetic foot ulcers (DFUs), thereby reducing the quality of life. Despite its clinical importance, the mechanisms underlying this dysfunction remain inadequately elucidated. This study addresses this gap by demonstrating that despite structural integrity, sweat glands (SGs) in diabetic individuals with DFUs, and a murine model of diabetic neuropathy (DN), exhibit functional impairments, as confirmed by histological and functional assays. Integrated transcriptome and proteome analysis revealed significant upregulation of the SG microenvironment in response to hypoxia, highlighting potential underlying pathways involved. In addition, histological staining and tissue clearing techniques provided evidence of impaired neurovascular networks adjacent to SGs. Single-cell RNA sequencing unveiled intricate intercellular communication networks among endothelial cells (ECs), neural cells (NCs), and sweat gland cells (SGCs), emphasizing intricate cellular interactions within the SG microenvironment. Furthermore, an in vitro SGC–NC interaction model (SNIM) was employed to validate the supportive role of NCs in regulating SGC functions, highlighting the neurovascular-SG axis in diabetic pathophysiology. These findings confirm the hypoxia-driven upregulation of the SG microenvironment and underscore the critical role of the neurovascular-SG axis in diabetic pathophysiology, providing insights into potential therapeutic targets for managing diabetic complications and improving patient outcomes.

Abstract Image

缺氧驱动的神经血管损伤是糖尿病sudommotor功能障碍的结构功能分离的基础
糖尿病患者的Sudomotor功能障碍会增加裂缝、感染和糖尿病足溃疡(DFUs)的风险,从而降低生活质量。尽管其临床重要性,这种功能障碍的机制仍未充分阐明。本研究通过证明,尽管结构完整,糖尿病DFUs患者的汗腺(SGs)和糖尿病神经病变(DN)的小鼠模型表现出功能损伤,并通过组织学和功能分析证实了这一点,从而解决了这一空白。综合转录组和蛋白质组分析显示,SG微环境在缺氧反应中显著上调,突出了潜在的潜在途径。此外,组织学染色和组织清除技术提供了SGs附近神经血管网络受损的证据。单细胞RNA测序揭示了内皮细胞(ECs)、神经细胞(nc)和汗腺细胞(SGCs)之间复杂的细胞间通讯网络,强调了SG微环境中复杂的细胞相互作用。此外,通过体外SGC - nc相互作用模型(SNIM)验证了NCs在调节SGC功能中的支持作用,突出了神经血管- sg轴在糖尿病病理生理中的作用。这些发现证实了缺氧驱动的SG微环境上调,并强调了神经血管-SG轴在糖尿病病理生理中的关键作用,为管理糖尿病并发症和改善患者预后提供了潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信