Harnessing Thrombospondin-1-Enabled Decellularized Nucleus Pulposus Matrices and Elastin-Like Recombinamers to Rebuild an Avascular Analogue of the Intervertebral Disc
Carlos Marinho Botelho, José Carlos Rodríguez-Cabello, Mário Adolfo Barbosa
{"title":"Harnessing Thrombospondin-1-Enabled Decellularized Nucleus Pulposus Matrices and Elastin-Like Recombinamers to Rebuild an Avascular Analogue of the Intervertebral Disc","authors":"Carlos Marinho Botelho, José Carlos Rodríguez-Cabello, Mário Adolfo Barbosa","doi":"10.1002/jbm.a.37911","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the degeneration of the intervertebral disc (IVD), the ingrowth of vascular and neural structures occurs. Both nerves and blood vessels engage in the development of inflammation and the onset of discogenic pain. The present study aimed to produce a hierarchical biomaterial capable of inhibiting angiogenesis by emulating the microenvironment of non-degenerated IVDs. To this end, we have incorporated an angiogenesis modulator—thrombospondin-1 (TSP-1) into a three-dimensional (3D) hydrogel network containing decellularized nucleus pulposus (dNPs) and azide-cyclooctyne modified elastin-like recombinamers (ELRs). Following the decellularization of nucleus pulposus (NPs) isolated from bovine tissues, pre-gels (pGs) were assembled based on the acid-pepsin extraction of soluble collagens found in the dNPs. Given the inherent affinity of these macromolecules to TSP-1, which was corroborated by immunohistochemical analysis and FT-IR spectroscopy, the pGs were supplemented with two concentrations of TSP-1. Angiogenesis was evaluated using the chick chorioallantoic membrane (CAM) in vivo model. Conjugation of TSP-1 with the pGs resulted in a synergistic suppression of blood vessel formation. Complexation with the ELRs improved the viscoelastic moduli and the structural stability of the hydrogels, which maintained their hydration and osmolarity properties due to the presence of the dNPs. When placed in direct contact with human primary fibroblasts, the materials displayed high cytocompatibility and tunable degradation rates. Our findings indicate that TSP-1-enabled dNP-derived pGs inhibit angiogenesis in vivo, while the presence of the ELRs aids in improving the mechanical properties of the hydrogels, thus providing a platform for rebuilding an avascular analogue of the healthy IVD.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37911","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the degeneration of the intervertebral disc (IVD), the ingrowth of vascular and neural structures occurs. Both nerves and blood vessels engage in the development of inflammation and the onset of discogenic pain. The present study aimed to produce a hierarchical biomaterial capable of inhibiting angiogenesis by emulating the microenvironment of non-degenerated IVDs. To this end, we have incorporated an angiogenesis modulator—thrombospondin-1 (TSP-1) into a three-dimensional (3D) hydrogel network containing decellularized nucleus pulposus (dNPs) and azide-cyclooctyne modified elastin-like recombinamers (ELRs). Following the decellularization of nucleus pulposus (NPs) isolated from bovine tissues, pre-gels (pGs) were assembled based on the acid-pepsin extraction of soluble collagens found in the dNPs. Given the inherent affinity of these macromolecules to TSP-1, which was corroborated by immunohistochemical analysis and FT-IR spectroscopy, the pGs were supplemented with two concentrations of TSP-1. Angiogenesis was evaluated using the chick chorioallantoic membrane (CAM) in vivo model. Conjugation of TSP-1 with the pGs resulted in a synergistic suppression of blood vessel formation. Complexation with the ELRs improved the viscoelastic moduli and the structural stability of the hydrogels, which maintained their hydration and osmolarity properties due to the presence of the dNPs. When placed in direct contact with human primary fibroblasts, the materials displayed high cytocompatibility and tunable degradation rates. Our findings indicate that TSP-1-enabled dNP-derived pGs inhibit angiogenesis in vivo, while the presence of the ELRs aids in improving the mechanical properties of the hydrogels, thus providing a platform for rebuilding an avascular analogue of the healthy IVD.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.