Ni Dai, Hui Su, J. David Neelin, Brian J. Soden, Yi-Hung Kuo
{"title":"Observed Links Between Atmospheric Cloud Radiative Effects and Mesoscale Organization of Deep Convection","authors":"Ni Dai, Hui Su, J. David Neelin, Brian J. Soden, Yi-Hung Kuo","doi":"10.1029/2024JD041030","DOIUrl":null,"url":null,"abstract":"<p>Recent research suggests atmospheric cloud radiative effect (ACRE) acts as an important feedback mechanism for enhancing the development of convective self-aggregation in idealized numerical simulations. Here, we seek observational relationships between longwave (LW) ACRE and the spatial organization of mesoscale convective systems (MCSs) in the tropics. Three convective organization metrics that are positively correlated with the area of MCS, that is, convective organization potential, the area fraction of precipitating MCS, and the precipitation fraction of MCS, are used to indicate the degree of convective organization. Our results show that the contrast in the LW ACRE inside and outside an MCS is consistent across different MCS precipitation intensities throughout the life cycle of an MCS, typically 90–100 W/m<sup>2</sup>, and provides important positive feedback to the circulation of the given MCS. However, the LW ACRE inside and outside an MCS as well as their difference are not strongly related to the degree of organization, suggesting that the LW cloud radiative feedback may be supportive of MCS formation and maintenance without necessarily being a dominant factor for spatial organization of MCSs. The domain average vertical velocity does tend to be related to the measures of convective organization, suggesting that factors that favor large-scale low-level convergence may exert a leading effect in creating an environment favorable for mesoscale organization of deep convection.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041030","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research suggests atmospheric cloud radiative effect (ACRE) acts as an important feedback mechanism for enhancing the development of convective self-aggregation in idealized numerical simulations. Here, we seek observational relationships between longwave (LW) ACRE and the spatial organization of mesoscale convective systems (MCSs) in the tropics. Three convective organization metrics that are positively correlated with the area of MCS, that is, convective organization potential, the area fraction of precipitating MCS, and the precipitation fraction of MCS, are used to indicate the degree of convective organization. Our results show that the contrast in the LW ACRE inside and outside an MCS is consistent across different MCS precipitation intensities throughout the life cycle of an MCS, typically 90–100 W/m2, and provides important positive feedback to the circulation of the given MCS. However, the LW ACRE inside and outside an MCS as well as their difference are not strongly related to the degree of organization, suggesting that the LW cloud radiative feedback may be supportive of MCS formation and maintenance without necessarily being a dominant factor for spatial organization of MCSs. The domain average vertical velocity does tend to be related to the measures of convective organization, suggesting that factors that favor large-scale low-level convergence may exert a leading effect in creating an environment favorable for mesoscale organization of deep convection.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.