{"title":"Photothermal Promotion of Uranium Extraction from Seawater with Self-Supporting Functionalized Polyurethane Sponge","authors":"Xinyu Kong, Zewen Shen, Huihui Jin, Hao Pan, Hongliang Bao, Chumin Yan, Yezi Hu, Guixia Zhao, Xiangke Wang, Xiubing Huang","doi":"10.1002/solr.202500011","DOIUrl":null,"url":null,"abstract":"<p>Extracting uranium from seawater at an ultralow concentration (3.3 ppb) is a promising approach for the sustainable development of nuclear energy, which presents a critical obstacle. Herein, we report a photothermal-promoted extraction strategy by utilizing a self-supporting covalent organic polymer-based sponge (named TpPa-SO<sub>3</sub>H@PU sponge) composed of black polyurethane sponge substrate and <i>β</i>-ketoenamine covalent organic polymer with sulfonic acid groups. The adequate water transport induced by photothermal conversion significantly improves the mass transfer of uranyl ions. Compared with the dark condition, a 25.8% increase of uranyl extraction capacity, up to 36.4 mg g<sup>−1</sup>, is achieved under simulated sunlight irradiation. In 1 L of seawater, 83.8% of uranyl is extracted after exposure to natural sunlight for 48 h. Furthermore, 20 mL of concentrated solution containing 1 ppm uranyl is obtained from 9 L seawater after nine consecutive extraction-elution cycles. These results demonstrate that TpPa-SO<sub>3</sub>H@PU sponge holds significant potential for practical uranium extraction from seawater under natural sunlight.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500011","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting uranium from seawater at an ultralow concentration (3.3 ppb) is a promising approach for the sustainable development of nuclear energy, which presents a critical obstacle. Herein, we report a photothermal-promoted extraction strategy by utilizing a self-supporting covalent organic polymer-based sponge (named TpPa-SO3H@PU sponge) composed of black polyurethane sponge substrate and β-ketoenamine covalent organic polymer with sulfonic acid groups. The adequate water transport induced by photothermal conversion significantly improves the mass transfer of uranyl ions. Compared with the dark condition, a 25.8% increase of uranyl extraction capacity, up to 36.4 mg g−1, is achieved under simulated sunlight irradiation. In 1 L of seawater, 83.8% of uranyl is extracted after exposure to natural sunlight for 48 h. Furthermore, 20 mL of concentrated solution containing 1 ppm uranyl is obtained from 9 L seawater after nine consecutive extraction-elution cycles. These results demonstrate that TpPa-SO3H@PU sponge holds significant potential for practical uranium extraction from seawater under natural sunlight.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.