{"title":"Enhancing Robustness of OFDM Systems Using LSTM-Based Autoencoders","authors":"Rajarajan P, Madona B. Sahaai","doi":"10.1002/dac.70090","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The ability of orthogonal frequency division multiplexing (OFDM) to counteract frequency-selective fading channels has made it a popular modem technology in contemporary communication systems. But maintaining dependable signaling is still difficult, especially when the signal-to-noise ratio (SNR) is low. In order to increase the dependability of OFDM systems, this study presents an enhanced LSTM-based autoencoder architecture. The suggested autoencoder efficiently utilizes temporal dependencies and reduces the impacts of channel distortion by encoding and decoding OFDM signals utilizing one-hot encoding employing long short-term memory (LSTM) networks. The outcomes of the simulation show notable gains in performance indicators. The average block error rate (BLER) of the suggested model is 0.0150, as opposed to 0.0296 for traditional autoencoders and 0.0886 for convolutional OFDM systems. Comparably, the average packet error rate (PER) is decreased to 0.0017, surpassing convolutional OFDM systems' 0.2260 and traditional autoencoders' 0.0070. These outcomes highlight the LSTM-based autoencoder's efficacy in enhancing OFDM systems' dependability, especially in demanding settings. This study lays the groundwork for employing cutting-edge deep learning methods to create reliable and effective communication systems.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70090","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The ability of orthogonal frequency division multiplexing (OFDM) to counteract frequency-selective fading channels has made it a popular modem technology in contemporary communication systems. But maintaining dependable signaling is still difficult, especially when the signal-to-noise ratio (SNR) is low. In order to increase the dependability of OFDM systems, this study presents an enhanced LSTM-based autoencoder architecture. The suggested autoencoder efficiently utilizes temporal dependencies and reduces the impacts of channel distortion by encoding and decoding OFDM signals utilizing one-hot encoding employing long short-term memory (LSTM) networks. The outcomes of the simulation show notable gains in performance indicators. The average block error rate (BLER) of the suggested model is 0.0150, as opposed to 0.0296 for traditional autoencoders and 0.0886 for convolutional OFDM systems. Comparably, the average packet error rate (PER) is decreased to 0.0017, surpassing convolutional OFDM systems' 0.2260 and traditional autoencoders' 0.0070. These outcomes highlight the LSTM-based autoencoder's efficacy in enhancing OFDM systems' dependability, especially in demanding settings. This study lays the groundwork for employing cutting-edge deep learning methods to create reliable and effective communication systems.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.