Producing “green” methanol from syngas, derived from anaerobic digestion biogas

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Huili Zhang, Yibing Kou, Miao Yang, Margot Vander Elst, Jan Baeyens, Yimin Deng
{"title":"Producing “green” methanol from syngas, derived from anaerobic digestion biogas","authors":"Huili Zhang,&nbsp;Yibing Kou,&nbsp;Miao Yang,&nbsp;Margot Vander Elst,&nbsp;Jan Baeyens,&nbsp;Yimin Deng","doi":"10.1007/s11705-025-2549-y","DOIUrl":null,"url":null,"abstract":"<div><p>An anaerobic digester of sewage sludge or agro-industrial waste produces biogas and ammonia-rich digestate. Three H<sub>2</sub>-producing processes exist: dry reforming of methane (from biogas), catalytic decomposition of methane (from biogas after CO<sub>2</sub> capture), and catalytic decomposition of ammonia (from digestate). Dry reforming of methane offers the best syngas yield at 700 °C and for a 50–50 vol % CH<sub>4</sub>/CO<sub>2</sub> biogas. Catalytic decomposition of methane achieved a H<sub>2</sub> yield of 95%. Finally, the digestate was stripped and NH<sub>3</sub> was further completely decomposed into H<sub>2</sub> and N<sub>2</sub>, for a complete NH<sub>3</sub> conversion at 650 °C. A methanol valorization case study of a wastewater treatment plant of 300000 person equivalents with an anaerobic digester is examined. The methanol production from syngas (H<sub>2</sub>/CO) and H<sub>2</sub> product streams is simulated using Aspen Plus®. This anaerobic digester process will daily generate 4485 m<sup>3</sup> CH<sub>4</sub>, 2415 m<sup>3</sup> CO, and 320 kg NH<sub>3</sub>. The methanol production will be 183 kg·h<sup>−1</sup> (1600 t·y<sup>−1</sup>). The additional H<sub>2</sub> from ammonia’s catalytic decomposition (631 m<sup>3</sup>·d<sup>−1</sup>) can be valorized with excess biogas in the anaerobic digester-associated combined heat and power unit. Due to a significantly higher ammonia concentration in manure, catalytic decomposition of ammonia will produce more H<sub>2</sub> if manure would be co-digested.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2549-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An anaerobic digester of sewage sludge or agro-industrial waste produces biogas and ammonia-rich digestate. Three H2-producing processes exist: dry reforming of methane (from biogas), catalytic decomposition of methane (from biogas after CO2 capture), and catalytic decomposition of ammonia (from digestate). Dry reforming of methane offers the best syngas yield at 700 °C and for a 50–50 vol % CH4/CO2 biogas. Catalytic decomposition of methane achieved a H2 yield of 95%. Finally, the digestate was stripped and NH3 was further completely decomposed into H2 and N2, for a complete NH3 conversion at 650 °C. A methanol valorization case study of a wastewater treatment plant of 300000 person equivalents with an anaerobic digester is examined. The methanol production from syngas (H2/CO) and H2 product streams is simulated using Aspen Plus®. This anaerobic digester process will daily generate 4485 m3 CH4, 2415 m3 CO, and 320 kg NH3. The methanol production will be 183 kg·h−1 (1600 t·y−1). The additional H2 from ammonia’s catalytic decomposition (631 m3·d−1) can be valorized with excess biogas in the anaerobic digester-associated combined heat and power unit. Due to a significantly higher ammonia concentration in manure, catalytic decomposition of ammonia will produce more H2 if manure would be co-digested.

利用厌氧消化沼气产生的合成气生产 "绿色 "甲醇
污水污泥或农业工业废物的厌氧消化器产生沼气和富含氨的消化液。存在三种产生h2的过程:甲烷的干重整(来自沼气)、甲烷的催化分解(来自二氧化碳捕获后的沼气)和氨的催化分解(来自消化液)。甲烷的干重整在700°C和50-50 vol % CH4/CO2的沼气中提供了最好的合成气产率。甲烷催化分解H2产率达到95%。最后,将消化液剥离,NH3进一步完全分解为H2和N2,在650℃下完成NH3转化。对一个30万人当量的污水处理厂的厌氧消化器进行了甲醇增值案例研究。使用Aspen Plus®模拟合成气(H2/CO)和H2产品流的甲醇生产。该厌氧消化工艺每天将产生4485 m3 CH4, 2415 m3 CO和320 kg NH3。甲醇产量为183 kg·h−1 (1600 t·y−1)。氨催化分解产生的额外H2 (631 m3·d−1)可在厌氧消化池-联产热电联产装置中与多余的沼气进行循环利用。由于粪便中氨的浓度明显较高,如果粪被共消化,氨的催化分解会产生更多的H2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信