{"title":"Interpretation of Wave Function by Coherent Ensembles of Trajectories","authors":"V. V. Kisil","doi":"10.1134/S1547477124701826","DOIUrl":null,"url":null,"abstract":"<p>We re-use some original ideas of de Broglie, Schrödiger, Dirac and Feynman to revise the ensemble interpretation of wave function in quantum mechanics. To this end we introduce coherence (auto-concordance) of ensembles of quantum trajectories in the space-time. The coherence condition accounts phases proportional to classical action, which are in foundation of the Feynman path integral technique. Therefore, our interpretation is entirely based on well-known and tested concepts and methods of wave mechanics. Similarly to other ensemble interpretations our approach allows us to avoid all problems and paradoxes related to wave function collapse during a measurement process. Another consequence is that no quantum computation or quantum cryptography method will ever work if it assumes that a particular q-bit represents the entire wave function.</p>","PeriodicalId":730,"journal":{"name":"Physics of Particles and Nuclei Letters","volume":"22 1","pages":"24 - 27"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1547477124701826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We re-use some original ideas of de Broglie, Schrödiger, Dirac and Feynman to revise the ensemble interpretation of wave function in quantum mechanics. To this end we introduce coherence (auto-concordance) of ensembles of quantum trajectories in the space-time. The coherence condition accounts phases proportional to classical action, which are in foundation of the Feynman path integral technique. Therefore, our interpretation is entirely based on well-known and tested concepts and methods of wave mechanics. Similarly to other ensemble interpretations our approach allows us to avoid all problems and paradoxes related to wave function collapse during a measurement process. Another consequence is that no quantum computation or quantum cryptography method will ever work if it assumes that a particular q-bit represents the entire wave function.
期刊介绍:
The journal Physics of Particles and Nuclei Letters, brief name Particles and Nuclei Letters, publishes the articles with results of the original theoretical, experimental, scientific-technical, methodological and applied research. Subject matter of articles covers: theoretical physics, elementary particle physics, relativistic nuclear physics, nuclear physics and related problems in other branches of physics, neutron physics, condensed matter physics, physics and engineering at low temperatures, physics and engineering of accelerators, physical experimental instruments and methods, physical computation experiments, applied research in these branches of physics and radiology, ecology and nuclear medicine.