A New \(\mathbb {Z}_3\)-Graded Quantum Space And Its Geometry

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Sultan A. Çelik, Ayse Peker-Dobie, Fatma Bulut, İlknur Temli
{"title":"A New \\(\\mathbb {Z}_3\\)-Graded Quantum Space And Its Geometry","authors":"Sultan A. Çelik,&nbsp;Ayse Peker-Dobie,&nbsp;Fatma Bulut,&nbsp;İlknur Temli","doi":"10.1007/s10773-025-05947-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we initially define an <i>R</i>-matrix with rank 9. Through the application of the \"quantum group relation\", we derive a <span>\\(\\mathbb {Z}_3\\)</span>-graded quantum group, denoted by <span>\\(\\widetilde{GL}_q(1|1|1)\\)</span>, representing the group of <span>\\(3\\times 3\\)</span> matrices. By introducing a <span>\\(\\mathbb {Z}_3\\)</span>-graded quantum space, denoted by <span>\\(\\widetilde{\\mathbb {C}}_q^{1|1|1}\\)</span>, along with its exterior algebra, we formulate two <span>\\(\\mathbb {Z}_3\\)</span>-graded differential calculi which are covariant with respect to the <span>\\(\\mathbb {Z}_3\\)</span>-graded Hopf algebra of functions on the <span>\\(\\mathbb {Z}_3\\)</span>-graded quantum group <span>\\(\\widetilde{GL}_q(1|1|1)\\)</span>.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05947-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we initially define an R-matrix with rank 9. Through the application of the "quantum group relation", we derive a \(\mathbb {Z}_3\)-graded quantum group, denoted by \(\widetilde{GL}_q(1|1|1)\), representing the group of \(3\times 3\) matrices. By introducing a \(\mathbb {Z}_3\)-graded quantum space, denoted by \(\widetilde{\mathbb {C}}_q^{1|1|1}\), along with its exterior algebra, we formulate two \(\mathbb {Z}_3\)-graded differential calculi which are covariant with respect to the \(\mathbb {Z}_3\)-graded Hopf algebra of functions on the \(\mathbb {Z}_3\)-graded quantum group \(\widetilde{GL}_q(1|1|1)\).

一个新的\(\mathbb {Z}_3\) -梯度量子空间及其几何
在本文中,我们首先定义一个秩为9的r矩阵。通过应用“量子群关系”,我们得到了一个\(\mathbb {Z}_3\) -分级量子群,记为\(\widetilde{GL}_q(1|1|1)\),表示\(3\times 3\)矩阵群。通过引入一个表示为\(\widetilde{\mathbb {C}}_q^{1|1|1}\)的\(\mathbb {Z}_3\) -分级量子空间及其外部代数,我们给出了两个\(\mathbb {Z}_3\) -分级微分微积分,它们相对于\(\mathbb {Z}_3\) -分级量子群\(\widetilde{GL}_q(1|1|1)\)上函数的\(\mathbb {Z}_3\) -分级Hopf代数是协变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信