Single step site-selective reaction to construct a Ag2Au2 ← Ag4 supramolecular assembly from hybrid N-heterocyclic carbene (NHC): synthesis, structures and optoelectronic properties†
{"title":"Single step site-selective reaction to construct a Ag2Au2 ← Ag4 supramolecular assembly from hybrid N-heterocyclic carbene (NHC): synthesis, structures and optoelectronic properties†","authors":"Pooja Das, Soumi Halder, Partha Pratim Ray, Narayan Ch. Jana, Priyanka Sahu, Anvarhusein A. Isab, Rambabu Dandela, Ramalingam Natarajan and Joydev Dinda","doi":"10.1039/D5RA00684H","DOIUrl":null,"url":null,"abstract":"<p >Two supramolecular complex assemblies, [Ag<small><sub>4</sub></small>(<strong>1</strong>)<small><sub>2</sub></small>][PF<small><sub>6</sub></small>]<small><sub>4</sub></small>·4MeCN <strong>2</strong> and Ag(<small>I</small>)–Au(<small>I</small>) mixed metal complex [Ag<small><sub>2</sub></small>Au<small><sub>2</sub></small>(<strong>1</strong>)<small><sub>2</sub></small>][PF<small><sub>6</sub></small>]<small><sub>4</sub></small>·4MeCN <strong>3</strong>, have been prepared from 3-(pyridylmethyl)imidazo[1,5-<em>a</em>]pyridin-4-ylium hexafluorophosphate (<strong>1</strong> HPF<small><sub>6</sub></small>), which is the precursor of N-heterocyclic carbene (NHC). These complexes were subsequently analyzed using various spectroscopic techniques to confirm their structural and chemical properties. Transmetallation of Au(<small>I</small>) onto the Ag<small><sub>4</sub></small> macrocycle results in the formation of an Ag<small><sub>2</sub></small>Au<small><sub>2</sub></small> macrocyclic assembly. Au(<small>I</small>) selectively binds with the soft donor C<small><sub>carbene</sub></small>, whereas Ag(<small>I</small>) binds with comparatively hard donor N<small><sub>py</sub></small> (py = pyridine). The geometries of <strong>2</strong> and <strong>3</strong> were established by single-crystal X-ray diffraction studies. Both molecules form a 2D network through M–M and several non-covalent interactions. Electrical conductivity measurements revealed that Ag(<small>I</small>) complex <strong>2</strong> is better conductor than Au(<small>I</small>) complex <strong>3</strong>. Optoelectronic studies revealed the utility of complexes <strong>2</strong> and <strong>3</strong> as photovoltaic devices. Furthermore, MS-junction potential measurements show that they are suitable for semiconductor devices, with complex <strong>2</strong> being more efficient than complex <strong>3</strong>. Finally, in this study, we aimed to explore the scope of (i) the development of heterobimetallic supramolecular organometallic complexes (SOC), (ii) the charge transport behaviour of SOCs, and (iii) the modification of intrinsically conductive SOCs-based electronics.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 17","pages":" 13086-13094"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00684h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00684h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two supramolecular complex assemblies, [Ag4(1)2][PF6]4·4MeCN 2 and Ag(I)–Au(I) mixed metal complex [Ag2Au2(1)2][PF6]4·4MeCN 3, have been prepared from 3-(pyridylmethyl)imidazo[1,5-a]pyridin-4-ylium hexafluorophosphate (1 HPF6), which is the precursor of N-heterocyclic carbene (NHC). These complexes were subsequently analyzed using various spectroscopic techniques to confirm their structural and chemical properties. Transmetallation of Au(I) onto the Ag4 macrocycle results in the formation of an Ag2Au2 macrocyclic assembly. Au(I) selectively binds with the soft donor Ccarbene, whereas Ag(I) binds with comparatively hard donor Npy (py = pyridine). The geometries of 2 and 3 were established by single-crystal X-ray diffraction studies. Both molecules form a 2D network through M–M and several non-covalent interactions. Electrical conductivity measurements revealed that Ag(I) complex 2 is better conductor than Au(I) complex 3. Optoelectronic studies revealed the utility of complexes 2 and 3 as photovoltaic devices. Furthermore, MS-junction potential measurements show that they are suitable for semiconductor devices, with complex 2 being more efficient than complex 3. Finally, in this study, we aimed to explore the scope of (i) the development of heterobimetallic supramolecular organometallic complexes (SOC), (ii) the charge transport behaviour of SOCs, and (iii) the modification of intrinsically conductive SOCs-based electronics.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.