Fabrication and inkjet printing of manganese oxide electrodes for energy storage

IF 5.5 Q1 ENGINEERING, CHEMICAL
Anesu Nyabadza , Achu Titus , Éanna McCarthy , Lola Azoulay-Younes , Sean Ryan , Sithara Sreenilayam , Valeria Nicolosi , Mercedes Vazquez , Dermot Brabazon
{"title":"Fabrication and inkjet printing of manganese oxide electrodes for energy storage","authors":"Anesu Nyabadza ,&nbsp;Achu Titus ,&nbsp;Éanna McCarthy ,&nbsp;Lola Azoulay-Younes ,&nbsp;Sean Ryan ,&nbsp;Sithara Sreenilayam ,&nbsp;Valeria Nicolosi ,&nbsp;Mercedes Vazquez ,&nbsp;Dermot Brabazon","doi":"10.1016/j.ceja.2025.100761","DOIUrl":null,"url":null,"abstract":"<div><div>Inkjet printing of nanoparticle inks is rising method for fabricating energy storage electrodes and is driven by the demand for supercapacitors and flexible batteries for wearables. The process can be optimized on two fronts, the printing parameters and the ink fabrication. Researchers often lack control over ink formulation and must instead focus on optimizing printing parameters. This study demonstrates that both aspects can be optimized using Pulsed Laser Ablation in Liquid (PLAL) to tailor nanoparticle ink properties, coupled with real-time process monitoring and design of experiments for inkjet printing. Automated in-line monitoring of nanoparticle size and concentration via UV–Vis and DLS measurements every 5 min provided real-time data. The final ink had a mean particle size of 3 nm with a viscosity of 1.3 mPa.s. A design of experiments approach examined the effects of inkjet parameters on print quality on a polymer substrate with optimal printing conditions found to be 30 layers, 40 kHz jetting frequency, and 28 °C nozzle/bed temperature based on consistency in pixel values. The resulting Mn electrodes exhibited pseudocapacitive behavior with initial oxidation leading to stable manganese oxides. XPS analysis of printed electrodes revealed a chemical composition of MnO (64 %), MnO<sub>2</sub> (26 %), and Mn<sub>2</sub>O<sub>3</sub> (9 %).</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100761"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inkjet printing of nanoparticle inks is rising method for fabricating energy storage electrodes and is driven by the demand for supercapacitors and flexible batteries for wearables. The process can be optimized on two fronts, the printing parameters and the ink fabrication. Researchers often lack control over ink formulation and must instead focus on optimizing printing parameters. This study demonstrates that both aspects can be optimized using Pulsed Laser Ablation in Liquid (PLAL) to tailor nanoparticle ink properties, coupled with real-time process monitoring and design of experiments for inkjet printing. Automated in-line monitoring of nanoparticle size and concentration via UV–Vis and DLS measurements every 5 min provided real-time data. The final ink had a mean particle size of 3 nm with a viscosity of 1.3 mPa.s. A design of experiments approach examined the effects of inkjet parameters on print quality on a polymer substrate with optimal printing conditions found to be 30 layers, 40 kHz jetting frequency, and 28 °C nozzle/bed temperature based on consistency in pixel values. The resulting Mn electrodes exhibited pseudocapacitive behavior with initial oxidation leading to stable manganese oxides. XPS analysis of printed electrodes revealed a chemical composition of MnO (64 %), MnO2 (26 %), and Mn2O3 (9 %).
用于储能的氧化锰电极的制造和喷墨打印
纳米颗粒油墨的喷墨打印是制造储能电极的新兴方法,并受到可穿戴设备对超级电容器和柔性电池需求的推动。该工艺可从印刷参数和油墨制备两方面进行优化。研究人员往往缺乏对油墨配方的控制,而必须把重点放在优化印刷参数上。该研究表明,利用脉冲激光烧蚀(PLAL)技术可以优化这两个方面,以定制纳米颗粒油墨的性能,并结合喷墨打印的实时过程监控和实验设计。通过UV-Vis和DLS测量,每5分钟自动在线监测纳米颗粒的大小和浓度,提供实时数据。最终油墨的平均粒径为3nm,粘度为1.3 mPa.s。实验设计方法考察了喷墨参数对聚合物基板打印质量的影响,发现最佳打印条件为30层,40 kHz喷射频率,基于像素值一致性的28°C喷嘴/床温度。所得到的Mn电极表现出假电容行为,初始氧化导致稳定的锰氧化物。XPS分析显示,印刷电极的化学成分为MnO (64%), MnO2(26%)和Mn2O3(9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信