Analysis of different phase change materials (PCMs) and wall material in a nano-circular space thermal energy storage (TES) system: A molecular dynamics approach
Cheng Cao , Ali B.M. Ali , Zahraa Abed Hussein , Narinderjit Singh Sawaran Singh , Barno Abdullaeva , Ahmad Zubair , Soheil Salahshour , Sh Baghaei
{"title":"Analysis of different phase change materials (PCMs) and wall material in a nano-circular space thermal energy storage (TES) system: A molecular dynamics approach","authors":"Cheng Cao , Ali B.M. Ali , Zahraa Abed Hussein , Narinderjit Singh Sawaran Singh , Barno Abdullaeva , Ahmad Zubair , Soheil Salahshour , Sh Baghaei","doi":"10.1016/j.ijthermalsci.2025.109954","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal energy storage (TES) play a vital role in overcoming the fluctuating nature of solar thermal energy. To study and understand the performance of these systems, using new techniques such as computer simulations can be useful. In this article, a specific circular nanochannel containing a phase change material (PCM) is introduced and its thermal and mass performance are investigated. By using two types of PCM and three wall metals (platinum, copper, and aluminum) the effects of changing several geometric and thermodynamic parameters are evaluated. In general, two different plans are proposed and parameters such as thermal conductivity, heat flux, charging, and discharging time are defined and evaluated. The obtained results show that the use of paraffin reduces the phase change time from 1.36 ns to 1.21 ns. Geometrical investigations also show that increasing the diameter ratio leads to a decrease in heat flux. Increasing the velocity of argon atoms in the inner tube also leads to an increase in the mobility of atoms and as a result improves the heat transfer rate. Using copper, the thermal conductivity is 54.3 % and 13.5 % higher than platinum and aluminum. The maximum heat flux for the two proposed cases is about 1500 and 1285 W/m2, respectively. Increasing the velocity of argon atoms from 0.01 Å/fs to 0.05 Å/fs leads to a decrease in the phase change time from 1.12 ns to 1.15 ns. Regarding the type of PCM, paraffin performs better than the combination of water-hydrocarbon.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 109954"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002777","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal energy storage (TES) play a vital role in overcoming the fluctuating nature of solar thermal energy. To study and understand the performance of these systems, using new techniques such as computer simulations can be useful. In this article, a specific circular nanochannel containing a phase change material (PCM) is introduced and its thermal and mass performance are investigated. By using two types of PCM and three wall metals (platinum, copper, and aluminum) the effects of changing several geometric and thermodynamic parameters are evaluated. In general, two different plans are proposed and parameters such as thermal conductivity, heat flux, charging, and discharging time are defined and evaluated. The obtained results show that the use of paraffin reduces the phase change time from 1.36 ns to 1.21 ns. Geometrical investigations also show that increasing the diameter ratio leads to a decrease in heat flux. Increasing the velocity of argon atoms in the inner tube also leads to an increase in the mobility of atoms and as a result improves the heat transfer rate. Using copper, the thermal conductivity is 54.3 % and 13.5 % higher than platinum and aluminum. The maximum heat flux for the two proposed cases is about 1500 and 1285 W/m2, respectively. Increasing the velocity of argon atoms from 0.01 Å/fs to 0.05 Å/fs leads to a decrease in the phase change time from 1.12 ns to 1.15 ns. Regarding the type of PCM, paraffin performs better than the combination of water-hydrocarbon.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.