Central H-spaces and banded types

IF 0.7 2区 数学 Q2 MATHEMATICS
Ulrik Buchholtz , J. Daniel Christensen , Jarl G. Taxerås Flaten , Egbert Rijke
{"title":"Central H-spaces and banded types","authors":"Ulrik Buchholtz ,&nbsp;J. Daniel Christensen ,&nbsp;Jarl G. Taxerås Flaten ,&nbsp;Egbert Rijke","doi":"10.1016/j.jpaa.2025.107963","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study <em>central</em> types, which are generalizations of Eilenberg–Mac Lane spaces. A type is central when it is equivalent to the component of the identity among its own self-equivalences. From centrality alone we construct an infinite delooping in terms of a tensor product of <em>banded types</em>, which are the appropriate notion of torsor for a central type. Our constructions are carried out in homotopy type theory, and therefore hold in any ∞-topos. Even when interpreted into the ∞-topos of spaces, our approach to constructing these deloopings is new.</div><div>Along the way, we further develop the theory of H-spaces in homotopy type theory, including their relation to <em>evaluation fibrations</em> and Whitehead products. These considerations let us, for example, rule out the existence of H-space structures on the 2<em>n</em>-sphere for <span><math><mi>n</mi><mo>&gt;</mo><mn>0</mn></math></span>. We also give a novel description of the moduli space of H-space structures on an H-space. Using this description, we generalize a formula of Arkowitz–Curjel and Copeland for counting the number of path components of this moduli space. As an application, we deduce that the moduli space of H-space structures on the 3-sphere is <span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mn>6</mn></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107963"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001021","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study central types, which are generalizations of Eilenberg–Mac Lane spaces. A type is central when it is equivalent to the component of the identity among its own self-equivalences. From centrality alone we construct an infinite delooping in terms of a tensor product of banded types, which are the appropriate notion of torsor for a central type. Our constructions are carried out in homotopy type theory, and therefore hold in any ∞-topos. Even when interpreted into the ∞-topos of spaces, our approach to constructing these deloopings is new.
Along the way, we further develop the theory of H-spaces in homotopy type theory, including their relation to evaluation fibrations and Whitehead products. These considerations let us, for example, rule out the existence of H-space structures on the 2n-sphere for n>0. We also give a novel description of the moduli space of H-space structures on an H-space. Using this description, we generalize a formula of Arkowitz–Curjel and Copeland for counting the number of path components of this moduli space. As an application, we deduce that the moduli space of H-space structures on the 3-sphere is Ω6S3.
中心h空间和带状类型
我们引入并研究了中心类型,它是Eilenberg-Mac Lane空间的推广。当一个类型在它自己的自我等价中等价于同一性的组成部分时,它就是中心的。仅从中心性出发,我们用带型张量积构造了一个无限展开,带型张量积是中心型扭量的适当概念。我们的构造是在同伦类型理论中进行的,因此在任何∞-拓扑上都成立。即使被解释为空间的∞拓扑,我们构建这些发展的方法也是新的。在此过程中,我们进一步发展了同伦型理论中的h空间理论,包括它们与评价颤振和Whitehead积的关系。这些考虑让我们,例如,在n>;0的情况下,排除2n球上h空间结构的存在。我们还给出了h空间上h空间结构的模空间的一种新的描述。利用这一描述,我们推广了Arkowitz-Curjel和Copeland计算该模空间路径分量的公式。作为应用,我们推导出3球上h空间结构的模空间为Ω6S3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信