Anthia C. Govender, Anil A. Chuturgoon, Terisha Ghazi
{"title":"A review on fumonisin B1-induced mitochondrial dysfunction and its impact on mitophagy and DNA methylation","authors":"Anthia C. Govender, Anil A. Chuturgoon, Terisha Ghazi","doi":"10.1016/j.fct.2025.115458","DOIUrl":null,"url":null,"abstract":"<div><div>Fumonisin B<sub>1</sub> (FB<sub>1</sub>) is a food-borne mycotoxin synthesized by <em>Fusarium verticillioides</em> and has been identified as a group 2B carcinogen. Recent research shows that the mitochondria and DNA in cells are targets of FB<sub>1</sub>. Mitophagy is a form of autophagy that functions to break down impaired mitochondria to preserve the overall functionality of the cell. DNA methylation is an epigenetic process that involves the enzymatic transfer of methyl groups from S-adenosylmethionine (SAM) to the C-5 region of the DNA cytosine ring by DNA methyltransferases (DNMTs). DNA methylation plays a key role in maintaining DNA integrity and FB<sub>1</sub> disrupts DNA methylation via FB<sub>1</sub>-induced folate deficiency. However, there is limited research available on the impact of FB<sub>1</sub> on mitophagy as well as FB<sub>1</sub>-induced oxidative stress and its influence on DNA methylation regulation. In this review, we aim to combine and summarize the current information on FB<sub>1</sub>-induced mitochondrial dysfunction, its impact on mitophagy as well as its DNA methylation effects.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"201 ","pages":"Article 115458"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525002261","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fumonisin B1 (FB1) is a food-borne mycotoxin synthesized by Fusarium verticillioides and has been identified as a group 2B carcinogen. Recent research shows that the mitochondria and DNA in cells are targets of FB1. Mitophagy is a form of autophagy that functions to break down impaired mitochondria to preserve the overall functionality of the cell. DNA methylation is an epigenetic process that involves the enzymatic transfer of methyl groups from S-adenosylmethionine (SAM) to the C-5 region of the DNA cytosine ring by DNA methyltransferases (DNMTs). DNA methylation plays a key role in maintaining DNA integrity and FB1 disrupts DNA methylation via FB1-induced folate deficiency. However, there is limited research available on the impact of FB1 on mitophagy as well as FB1-induced oxidative stress and its influence on DNA methylation regulation. In this review, we aim to combine and summarize the current information on FB1-induced mitochondrial dysfunction, its impact on mitophagy as well as its DNA methylation effects.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.