Shuang Li , Qian Chen , Chulhong Kim , Seongwook Choi , Yibing Wang , Yu Zhang , Changhui Li
{"title":"Zero-Shot Artifact2Artifact: Self-incentive artifact removal for photoacoustic imaging","authors":"Shuang Li , Qian Chen , Chulhong Kim , Seongwook Choi , Yibing Wang , Yu Zhang , Changhui Li","doi":"10.1016/j.pacs.2025.100723","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional (3D) photoacoustic imaging (PAI) with detector arrays has shown superior imaging capabilities in biomedical applications. However, the quality of 3D PAI is often degraded due to reconstruction artifacts caused by sparse detectors. Existing iterative or deep learning-based methods are either time-consuming or require large training datasets, limiting their practical application. Here, we propose Zero-Shot Artifact2Artifact (ZS-A2A), a zero-shot self-supervised artifact removal method based on a super-lightweight network, which leverages the fact that patterns of artifacts are more sensitive to sensor data loss. By randomly dropping acquired PA data, it spontaneously generates subset data to reconstruct images, which in turn stimulates the network to learn the artifact patterns in reconstruction results, thus enabling zero-shot artifact removal. This approach requires neither training data nor prior knowledge of the artifacts, making it suitable for artifact removal for arbitrary detector array configurations. We validated ZS-A2A in both simulation study and <span><math><mrow><mi>i</mi><mi>n</mi><mspace></mspace><mi>v</mi><mi>i</mi><mi>v</mi><mi>o</mi></mrow></math></span> animal experiments. Results demonstrate that ZS-A2A achieves high performance compared to existing zero-shot methods.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"43 ","pages":"Article 100723"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000461","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) photoacoustic imaging (PAI) with detector arrays has shown superior imaging capabilities in biomedical applications. However, the quality of 3D PAI is often degraded due to reconstruction artifacts caused by sparse detectors. Existing iterative or deep learning-based methods are either time-consuming or require large training datasets, limiting their practical application. Here, we propose Zero-Shot Artifact2Artifact (ZS-A2A), a zero-shot self-supervised artifact removal method based on a super-lightweight network, which leverages the fact that patterns of artifacts are more sensitive to sensor data loss. By randomly dropping acquired PA data, it spontaneously generates subset data to reconstruct images, which in turn stimulates the network to learn the artifact patterns in reconstruction results, thus enabling zero-shot artifact removal. This approach requires neither training data nor prior knowledge of the artifacts, making it suitable for artifact removal for arbitrary detector array configurations. We validated ZS-A2A in both simulation study and animal experiments. Results demonstrate that ZS-A2A achieves high performance compared to existing zero-shot methods.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.